
April 2010 Doc ID 17249 Rev 1 1/12

AN3174
Application note

Implementing an RC5 infrared remote control receiver
with the STM32F10xx microcontrollers

Introduction
Nowadays, almost all audio and video equipment can be controlled using an infrared remote
control. RC5 is the most popular protocol for transmitting data via infrared light. It was
developed by Philips in the late 1980’s.

This application note describes a software solution for implementing an RC5 receiver using
the STM32F10xx microcontrollers.

www.st.com

http://www.st.com

Contents AN3174

2/12 Doc ID 17249 Rev 1

Contents

1 RC5 protocol basics . 3

2 Hardware considerations . 5

3 Software implementation . 6

3.1 RC5 frame reading mechanism . 6

3.1.1 EXTI interrupt events . 6

3.1.2 TIMx interrupt events . 7

3.2 How to use the RC5 library . 7

3.2.1 RC5_Receiver_Init() function . 7

3.2.2 RC5_Sample_Data() function . 7

3.2.3 RC5_MeasureFirstLowDuration() function . 8

3.2.4 RC5_Decode() function . 8

3.3 RC5 Demo description . 9

4 Conclusion . 10

5 Revision history . 11

AN3174 RC5 protocol basics

Doc ID 17249 Rev 1 3/12

1 RC5 protocol basics

The RC5 code is a 14-bit word, it uses bi-phase modulation (also called Manchester coding)
of a 36 kHz IR carrier frequency. All bits have an equal length of 1.778 ms, with half of the bit
time filled with a burst of the 36 kHz carrier and the other half being idle. A logical zero is
represented by a burst in the first half of the bit time. A logical one is represented by a burst
in the second half of the bit time (refer to Figure 1.). The duty cycle of the 36 kHz carrier
frequency is 33% or 25% which reduces power consumption.

Figure 1. RC5 bit representation

The RC5 frame can generate 2048 (32x64) different commands organized on 32 groups,
each group has 64 different commands. A RC5 frame contains the following fields (An
example of RC5 frame is shown in Figure 2.):

● Start bit (S): 1 bit length, always logic 1.

● Field bit (F): 1 bit length, which denotes whether the command sent is in the lower field
(logic 1 = 0 to 63 decimal) or the upper field (logic 0 = 64 to 127 decimal). The field bit
was added later by Philips when it was realized that 64 commands per device were
insufficient. Previously, the field bit was combined with the start bit. Many devices still
use this original system.

● Control bit or Toggle bit (C): 1 bit length, which toggles each time a button is pressed.
This allows the receiving device to distinguish between two successive button presses
(such as "1", "1" for "11").

● Address: 5 bits length, that selects one of 32 possible systems.

● Command: 6 bits length, that (in conjunction with the field bit) represents one of the
128 possible RC-5 commands.

889 µs 889 µs 889 µs 889 µs

Modulated RC5 bit

Demodulated RC5 bit

Logic ‘0’ Logic ‘1’

AI15768

RC5 protocol basics AN3174

4/12 Doc ID 17249 Rev 1

Figure 2. Example of an RC5 frame

To avoid frame collisions, an idle time is inserted between two frames with a specific width
(see Figure 3.).

The idle time is defined as 50 bits wide. So the periodicity of a frame is 64 x 1 bit width: 64 x
1.778 = 113.792 ms (exactly 113.788 ms).

Figure 3. RC5 idle time

Table 1. RC5 timings

Description Min. Typical Max. Units

RC5 Half bit period 640 899 1140 µs

RC5 Full bit period 1340 1778 2220 µs

RC5 message time 23.644 24.889 26.133 ms

RC5 message repetition
time

108.089 113.778 119.467 ms

Carrier pulse bit time 27.233 27.778 28.345 µs

Address = 4
Command = 39

Field bi t = 1 (Command 0-63)
Control bit = 0

AI15768

S F 5 x Address bits 6 x Command bits

1 1 1 1 1110000000

C

14 bits

AI15770

Frame 1

14 bits

Frame 2

50 bits

Idle time

64 bits = 113.788 ms

AN3174 Hardware considerations

Doc ID 17249 Rev 1 5/12

2 Hardware considerations

To improve noise rejection, the pulses are modulated at 36 kHz. The easiest way to receive
these pulses is to use an integrated IR-receiver/demodulator module like the TSOP1736
(5 V supply version) or TSOP34836 (3.3 V supply version) or other equivalent part number
(refer to Figure 4.). These are 3-pin devices that receive the infrared burst and output the
demodulated bit stream on the output pin which is connected directly to one of the STM32
microcontroller’s GPIO pins. The GPIO pin used is selected by the user (refer to the section
Section 3.2.3 on page 8). If TSOP1736 is used, the selected GPIO should be Five volt
Tolerant (FT). The output of the IR module is inverted compared to the transmitted data (the
data is idle high and logic ’0’ becomes logic ‘1’ and vice versa)

Note: The IR module needs two external components: a capacitor and a resistor (refer to the
related IR module datasheet for their values).

Figure 4. Hardware configuration

AI15771

STM32

GPIOxOut

Modulated RC5 signal Demodulated and inverted
 RC5 signal (receiver s ide)

RC5 infra-red
Remote control

(EXTIx)

IR receiver
 module (36 kHz)

(transmitter s ide)

3.3 V3.3 V or 5 V

R

C

Software implementation AN3174

6/12 Doc ID 17249 Rev 1

3 Software implementation

3.1 RC5 frame reading mechanism
Figure 5. shows how the RC5 frame is received. Principally, two of the STM32
microcontroller’s embedded peripherals are used for this purpose: EXTI and a timer (TIMx).
The STM32 pin connected to the IR module’s output pin can be any GPIO selected by the
user (see Section 3.2: How to use the RC5 library on page 7).

Figure 5. RC5 frame reception mechanism

3.1.1 EXTI interrupt events

The EXTI interrupt is used to start and stop TIMx in order to measure the first low duration to
validate the header timing of the RC5 frame. Refer to events 1, 2 and 3 in Section Figure 5.:
RC5 frame reception mechanism on page 6

● First EXTI interrupt event (1): the TIMx counter is initialized and enabled.

● Second EXTI interrupt event (2): the TIMx counter is disabled, read and then initialized.
The value read from the counter gives the measured duration. The 3rd execution of the
EXTI interrupt depends on the measured duration:

– If the duration is within the tolerance range of one half bit time, the EXTI is not
disabled and the EXTI interrupt occurs for the 3rd time, which enables TIMx. TIMx
then starts sampling the RC5 data. In this case the Field bit will be recognized as
a logical 1.

– If the duration is within the tolerance range of one bit time, the EXTI is then
disabled at this moment and the TIMx update event interrupt as well as the TIMx
counter are enabled to start sampling the RC5 data. In this case the Field bit will

AI15772

S F C 0 1 1 0 0 0 1 1 0 0 1
RC5 frame to
be transmitted

IR remote control
output (Infra-red)

S F C 0 1 1 0 0 0 1 1 0 0 1IR receiver
module output

Low duration
measurement

3/4
bit
time

1bit
time

1bit
time

1bit
time

1bit
time

1bit
time

1bit
time

1bit
time

1bit
time

1bit
time

1bit
time

1bit
time

1bit
time

TIMx interrupts:
Sampling of

EXTIx interrupts:

RC5 pin

first low duration
measurement

(RC5 input pin)

1 2

3

A B B B B B B B B B B B B

“extra bit”
sampling
(13th bit
sampling)

AN3174 Software implementation

Doc ID 17249 Rev 1 7/12

recognized as a logical 0. If the duration seems to be a glitch, the system will be
initialized for the next RC5 frame.

● Third EXTI interrupt event (3): this interrupt occurrence depends on the duration of the
first low duration, see (2). When the interrupt occurs, TIMx is enabled and starts
sampling the RC5 data.

3.1.2 TIMx interrupt events

TIMx is used to sample each bit of the RC5 frame after checking the timing of the first low
duration of the frame.

TIMx interrupts are executed 13 times during an RC5 frame in order to sample all the bits.
The Start bit (S) and Field bit (F) are not sampled by TIMx and an « extra bit » is sampled at
the end of the RC5 frame to be sure that all bits have been received and an idle state is
present.

● TIMx interrupt event (A): at this time, the RC5 pin is sampled by a single reading of the
GPIO input data register. In this interrupt service routine, the TIMx is configured to
generate a periodic interrupt each bit time.

● TIMx interrupts event (B): at this time, the RC5 pin is sampled by a single reading of the
GPIO input data register and the interrupt service routine checks if the number of data
bits has reached 13 (n = 13: 14-2+1) If yes, the TIMx counter and the TIMx update
interrupt are disabled.

As we can see, reading from the GPIO input data register directly reflects the value of the
bit. If the read value is at low level this implies that the bit value is logic ‘0’. If the value read
is at high level this implies that the bit value is logic‘1’.

3.2 How to use the RC5 library
The RC5 driver is very simple to use. There are four functions accessible for the user.

3.2.1 RC5_Receiver_Init() function

This function is intended to initialize the different peripherals used by the RC5 driver: GPIOs,
EXTI and TIMx. It should be called after the user clock configuration.

3.2.2 RC5_Sample_Data() function

This function is used to sample the RC5 data. It should be called in the
RC5_TIM_IRQ_Handler routine (TIMx_IRQHandler) in the stm32f10x_it.c file. The
RC5_IR_Receiver.h file should be included in the stm32f10x_it.c file. By default, TIM2 is
used. You can use any timer (TIMx in the list below) by modifying the defines in the
RC5_IR_Receiver.h file(path: \STM32F10x_AN3174_FW_VX.Y.Z\Libraries\
STM32F10x_RC5_Emul_Receiver_Lib\inc\RC5_IR_Receiver.h) as follows:

Example:

If you want to use TIM3, make these modifications:

#define RC5_TIM TIM3

#define RC5_TIM_CLK RCC_APB1Periph_TIM3

#define RC5_TIM_IRQn TIM3_IRQn

Software implementation AN3174

8/12 Doc ID 17249 Rev 1

#define RC5_TIM_IRQ_Handler TIM3_IRQHandler

● You can choose any of the STM32F10x family timers.

3.2.3 RC5_MeasureFirstLowDuration() function

This function measures and validates the first low duration of the RC5 frame. When this
timing is in the range of the allowed timings, the function enables the RC5 frame sampling.
This function should be called in the appropriate EXTI interrupt handler (in stm32f10x_it.c
file) depending on the GPIO used for the RC5 input pin.

By default, GPIOB.01 is used as the RC5 input pin. You can use any GPIO by modifying the
defines in the RC5_IR_Receiver.h file path: \STM32F10x_AN3174_FW_VX.Y.Z\Libraries\
STM32F10x_RC5_Emul_Receiver_Lib\inc\RC5_IR_Receiver.h).

Example:

If you want to use GPIOD.09, make these modifications:

#define RC5_GPIO_PORT GPIOD

#define RC5_GPIO_CLK RCC_APB2Periph_GPIOD

#define RC5_GPIO_PIN GPIO_Pin_9

#define RC5_EXTI_PORT_SOURCE GPIO_PortSourceGPIOD

#define RC5_EXTI_PIN_SOURCE GPIO_PinSource9

#define RC5_EXTI_IRQn EXTI9_5_IRQn

#define RC5_EXTI_LINE EXTI_Line9

#define RC5_EXTI_IRQ_Handler EXTI9_5_IRQHandler

RC5_MeasureFirstLowDuration should be called in the RC5_EXTI_IRQHandler.

3.2.4 RC5_Decode() function

This function is intended to be called in the user application. It decodes the RC5 received
messages. It returns a structure that contains the different values of the RC5 frame.

typedef struct

{

 __IO uint8_t ToggleBit; /* Toggle bit field */

 __IO uint8_t Address; /* Address field */

 __IO uint8_t Command; /* Command field */

} RC5Frame_TypeDef;

RC5_decode() should be called when the RC5_FrameReceived flag is equal to YES.

Example of usage:

/* System Clocks Configuration */

 RCC_Configuration();

 /* Initialize RC5 reception */

AN3174 Software implementation

Doc ID 17249 Rev 1 9/12

 RC5_Receiver_Init();

while (1)
 {
 /* If RC5 frame has been received, then decode it */
 if (RC5_FrameReceived == YES)
 {

/* Get the RC5 frame */
 RC5_Frame = RC5_Decode();

}
}

3.3 RC5 Demo description
The RC5 demo consists of receiving RC5 messages and sending them to the hyperterminal
(see Figure 6.) using USART1 (115200 baud, 8-bit data, No parity, No Flow Control). Each
RC5 message is displayed in 3 parts:

● The value of the toggle bit.

● The device which transmitted the RC5 with its decimal value in brackets.

● The command to be executed and its decimal value in brackets.

When an RC5 message is received, LED1 will toggle on the board.

Figure 6. RC5 received frames shown in the hyperterminal

Conclusion AN3174

10/12 Doc ID 17249 Rev 1

4 Conclusion

This application note provides a solution for implementing a RC5 receiver in software using
an EXTI and a general purpose Timer (TIMx). The driver is very simple to use and it
supports standard and extended RC5 formats, which is not the case for several of the RC5
drivers offered by other manufacturers.

AN3174 Revision history

Doc ID 17249 Rev 1 11/12

5 Revision history

Table 2. Document revision history

Date Revision Changes

01-Apr-2010 1 Initial release.

AN3174

12/12 Doc ID 17249 Rev 1

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

	Contents
	1 RC5 protocol basics
	2 Hardware considerations
	3 Software implementation
	3.1 RC5 frame reading mechanism
	3.1.1 EXTI interrupt events
	3.1.2 TIMx interrupt events

	3.2 How to use the RC5 library
	3.2.1 RC5_Receiver_Init() function
	3.2.2 RC5_Sample_Data() function
	3.2.3 RC5_MeasureFirstLowDuration() function
	3.2.4 RC5_Decode() function

	3.3 RC5 Demo description

	4 Conclusion
	5 Revision history

