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Application note

lwIP TCP/IP stack demonstration
for STM32F107xx connectivity line microcontrollers

Introduction
STM32F107xx connectivity line microcontrollers feature a high-quality 10/100 Ethernet 
peripheral that supports both MII and RMII to interface the PHY.

One of the advanced features of the STM32F107xx's Ethernet controller is the capability of 
generating, inserting and verifying the checksums of the IP, UDP, TCP and ICMP protocols 
by hardware. In this application note, you can find a real application that uses this feature.

The objective of this application note is to present a demonstration package built on top of a 
free TCP/IP stack: the lwIP (lightweight IP). This package contains:

● A DHCP client, for IP address setting

● A Hello example based on the Telnet protocol

● A TFTP server, which transfers files from and to the microSD™ card located on the 
STM3210C-EVAL board

● A web server

● A Server/Clients example, which uses multiple boards and allows clients to control the 
server's LEDs.

www.st.com

http://www.st.com
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1 Porting lwIP to the STM32F107xx

1.1 lwIP stack overview
The lwIP is a free TCP/IP stack developed by Adam Dunkels at the Swedish institute of 
computer science (SICS) and licensed under the BSD license.

The source code can be downloaded from the link: http://savannah.nongnu.org/projects/lwip 

The lwIP TCP/IP stack supports the following protocols: IPv4, IPv6, UDP, TCP, ICMP, IGMP, 
SNMP, ARP and PPP.

It does not include protocols from the application layer, like HTTP or TFTP, and comes 
without examples.

The lwIP offers three types of API (application programming interface):

● a raw API: it is the native API used by the lwIP stack itself to interface with the different 
protocols.

● a Netconn API: it is a sequential API with a higher level of abstraction than the raw API.

● a socket API: it is a Berkeley-like API

The API used to build the demonstration is the raw API. It achieves the highest performance 
and does not require the use of an operating system. Both the Netconn and the Socket APIs 
need an operating system.

To get more information about the TCP/IP stack protocols, you can refer to the section 2 of 
the application note AN3000 (“Configuring the NicheLite TCP/IP stack for the STM32F107xx 
microcontroller”), available from the STMicroelectronics website www.st.com.

1.2 How to port lwIP to the STM32F107xx

1.2.1 Ethernet controller interface

The official release of the lwIP does not provide any port to any microcontroller. You need to 
do it by yourself. The lwIP however comes with a file called ethernetif.c, that works as an 
interface between the stack and the Ethernet controller. This file is presented as a skeleton 
to be completed to support a specified architecture.

For the STM32F107xx, the ethernetif.c (under Utilities\lwip-1.3.1\src\netif) and stm32_eth.c 
(under Libraries\STM32_ETH_Driver) files constitute the low-level layer, which is the 
interface between the stack and the Ethernet controller.

ethernetif.c contains functions that ensure the transfer of the frames between the low-level 
driver (stm32_eth.c) and the lwIP stack.

Its main function is ethernetif_input, which should be called when a packet is ready to be 
read from the interface.

The low-level layer was set to detect the reception of frames by interrupts. So, when the 
Ethernet controller receives a valid frame, it generates an interrupt in the handling function 
of which, the ethernetif_input call is made.
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1.2.2 Periodic lwIP tasks

Apart from setting the Ethernet controller interface, the lwIP has periodic 
tasks that should be handled. The STM32F107xx SysTick is used to build a system clock 
that serves as the reference to handle the different periodic tasks.

The main function of the periodic task handle is LwIP_Periodic_Handle, which is 
defined in the netconf.c file. This function guarantees the dispatching of the periodic lwIP 
tasks.

Note that the netconf.c file, which is not part of the lwIP stack, ensures the network interface 
configuration: lwIP initialization, MAC address setting and IP address setting.

1.2.3 lwIP configuration

The lwIP can be tuned to suit the application's requirements. The default parameters of the 
stack can be found in the opt.h file, located under the lwIP directory at src\include\lwIP\.

To modify these settings a new file is defined, lwipopts.h, based on the opt.h file, and located 
under the lwIP directory at port\. It contains the lwIP configuration for the STM32F107xx 
demonstration.

Basically these parameters concern:

● protocol selection, like DHCP, which can be enabled or disabled, defined by 
LWIP_DHCP

● the maximum number of simultaneously active connections, for TCP this is defined by 
MEMP_NUM_TCP_PCB and for UDP by MEMP_NUM_UDP_PCB

● the heap size, defined by MEM_SIZE

● the number of buffers, defined by PBUF_POOL_SIZE, and the buffer size, defined by 
PBUF_POOL_BUFSIZE

For more details, you can refer to the lwipopts.h file.

There is no special rule to follow when setting the number of buffers, the heap size and the 
other parameters, because they mainly depend on the application itself.

The number of buffers and the heap size allocated to the application depend on the 
application’s performance, simultaneous connection requirements and available RAM.

Increasing these parameters (number of buffers and heap size) boosts the application 
performance and connectivity but reduces the amount of available RAM. Conversely, 
decreasing these parameters increases the available RAM space but limits the application 
performance and connectivity.

The memory allocation defined in lwipopts.h is provided as an example and should be 
tailored to meet your application’s requirements. To ensure the robustness of the final 
application and to guarantee proper functioning in the worst case, you have to make sure 
that the application is tested in a network environment similar to the one to which the device 
is to be linked.
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1.2.4 STM32F107xx hardware checksum

The STM32F107xx has the capability of:

● generating and inserting the checksum of the IP, UDP, TCP and ICMP protocols by 
hardware for transmitting packets

● verifying the checksum of the IP, UDP, TCP and ICMP protocols by hardware for 
receiving packets

This feature frees some CPU load and improves the performance of the application.

Porting to the STM32F107xx takes advantage of this feature and provides both solutions:

● generating and verifying the checksum by hardware. In this case, uncomment 
#define CHECKSUM_BY_HARDWARE in the lwipopts.h file

● generating and verifying the checksum by software. In this case, comment #define 
CHECKSUM_BY_HARDWARE in the lwipopts.h file

With lwIP, you can disable software generation and checksum verification for the IP, UDP 
and TCP protocols. In the current port, this is done in the lwipopts.h file. For the ICMP, 
however, it is necessary to modify the icmp.c file to disable checksum calculation.

The STM32F107xx’s checksum by hardware feature can be enabled by setting:

● the CIC bits, in the first word of the Tx descriptor, for transmitted frames

● the IPCO bit, in the ETH_MACCR register, for received frames

For the demonstration firmware, you can enable or disable the checksum by hardware via 
the CHECKSUM_BY_HARDWARE define in the lwipopts.h file:

Uncomment it to select the checksum by hardware, and comment it to select the 
checksum by software.
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2 Description of the demonstration package

2.1 Package directories
When unzipped, the package has the structure shown in the figure below.

Figure 1. Demonstration package structure

The demonstration package contains four applications running on top of the lwIP stack. 
They are listed below:

● Hello example: is a TCP listener on port 23, the standard Telnet port, which replies to 
received messages by a Hello word.

● TFTP server: is a file transfer application that needs a remote TFTP client. The files are 
transferred to and from the microSD™ card located on the STM3210C-EVAL board.

● Web server: is a basic web server that controls the LEDs and reads the status of the 
potentiometer located on the STM3210C-EVAL board.

● UDP/TCP server/client: is a remote LED control application. A client connects to the 
server over a local network and gets the control of the LEDs (the four LEDs on the 
STM3210C-EVAL). This application requires at least two STM3210C-EVAL boards (a 
server and a client) and a local area network.

2.2 Demonstration settings

2.2.1 PHY interface configuration

The demonstration firmware is used to interface the PHY with the two modes: MII and RMII.

To select the PHY interface mode you wish to use, go to the stm32f107.c file (under 
\Project\src) and choose one of the two defines. For example, to select the RMII mode:
//#define MII_MODE
#define RMII_MODE

For the MII mode, the PHY clock is taken from the external crystal, while for the RMII mode, 
the clock is provided by the STM32F107xx over the MCO pin.
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To each mode corresponds a special hardware configuration. Section 2.2.4: STM3210C-
EVAL settings presents the settings required for MII and RMII.

2.2.2 MAC address settings

The MAC address is set in the netconf.c file (under \Project\src). By default the MAC 
address is set to 0:0:0:0:0:1.

When the Server/Client example is used, and in the case of a client, the firmware sets a 
different MAC address by replacing the sixth byte by the CLIENTMAC6 defined in the 
netconf.c file.

When you need to use more than one client, you need to modify the CLIENTMAC6 byte to 
get a different MAC address since every node in a network should have a unique MAC 
address.

2.2.3 IP address settings

The IP address can be set either as a static address, equal to 192.168.0.8, or as a dynamic 
address, assigned by a DHCP server.

The selection of the IP address’s configuration mode is done in the lwipopts.h file:

● Set #define LWIP_DHCP to 1 to configure the IP address by DHCP

● Set #define LWIP_DHCP to 0 to use the static address (192.168.0.8)

Note that if you choose to configure the IP address by DHCP and the application does not 
find a DHCP server on the network to which it is already connected, the IP address is then 
automatically set to the static address (192.168.0.8).

Note: To use the Server/Client demonstration, the DHCP option should be enabled to get a 
dynamic IP address, otherwise the demonstration is not initialized and so, cannot be used.

2.2.4 STM3210C-EVAL settings

Once you have set the PHY interface mode of your choice, you have to set the 
corresponding hardware configuration. Table 1 shows the STM3210C-EVAL evaluation 
board configuration for the MII and RMII modes.

         

Note: The TFTP demonstration transfers files from and to the microSD card available on the 
STM3210C-EVAL board. So, the jumpers JP15 and JP26 should be connected to be able to 
use the microSD card.

Table 1. STM3210C-EVAL jumpers configuration

Jumper MII mode configuration RMII mode configuration

JP2 Not connected Connected

JP3 2-3 1-2

JP4 1-2 2-3

JP11 2-3

JP12 2-3

JP13 2-3

JP14 1-2



Description of the demonstration package AN3102

10/18 Doc ID 16620 Rev 1

2.3 How to use the demonstration

2.3.1 Demonstration overview

When a frame is received, the Ethernet interface layer extracts the data and sends them to 
the stack. This is ensured by the ethernetif.c file. The lwIP stack handles the packet and 
looks for an available connection to forward the data. Packets like Ping, do not need any 
application process and are handled only by the stack.

The following figure shows how a packet is forwarded by the stack to the application level.

Figure 2. How applications handle a packet

All four applications can be run simultaneously from multiple network nodes, provided that 
the IP address setting is correct and the maximum number of connections has not been 
reached yet.

The number of connections is set in the lwipopts.h file:

● MEMP_NUM_UDP_PCB defines the number of simultaneously active UDP 
connections.

● MEMP_NUM_TCP_PCB defines the number of simultaneously active TCP 
connections.

Let us say that there are two PCs connected via a hub or a switch to the STM3210C-EVAL 
evaluation board. And that the first one has opened a web server page, two Telnet 
connections and was started as a Server: in total this makes 4 TCP connections opened. 
The number of free TCP connections is equal to MEMP_NUM_TCP_PCB minus 4.

For the UDP, the available connections are all used by the TFTP server application and the 
Server/Client example.
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The TFTP server application can serve more than one client (it can serve different network 
nodes), but only one client can have an active connection (only one client can use a UDP 
connection at a time).

The Server/Client demonstration includes an additional process that takes place at the 
initialization stage. The Client and the Server need to exchange their IP addresses to be 
able to communicate. This task is done by a UDP communication. Figure 3 illustrates the 
process.

Figure 3. UDP communication to establish the connection

2.3.2 Hello example

To run the Hello example, connect to the board via a remote PC and establish a Telnet 
connection with it.

On a Windows system, type the following command:

>telnet the_board’s_ip_address

Once the connection has been established a new window appears that displays the 
message: “Hello. What is your name?”. Type your name, or any message, and press the 
Enter key. Your name or message is displayed followed by “hello”.

How does it work?

This application is based on the Telnet protocol, which is a client/server TCP communication 
through the port 23.

The Hello application is the server and the remote PC is the client. The maximum number of 
clients is limited by the number of allowed TCP connections, which is defined by 
MEMP_NUM_TCP_PCB in the lwipopts.h file.

Every character typed on the client's terminal is immediately sent to the STM3210C-EVAL 
and received by the Hello application. When the Enter character is detected, the Hello 
application sends back the previous message followed by the word “Hello”.

The typed message should have a maximum length of 30 characters. The figure below 
shows an example, with the IP address set to the static value.
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Figure 4. Telnet demonstration example

2.3.3 Web server

To run the web server demo, open a web browser like Internet Explorer or Firefox and type 
the board’s IP address in the browser.

Figure 5. Web server browsing: here the static IP address is set

The web server is used to control the 4 LEDs and to get the status of the potentiometer 
located on the STM3210C-EVAL board.

2.3.4 TFTP server

The TFTP server waits for a request from a remote TFTP client. You have to connect to the 
STM3210C-EVAL board through a remote PC to download or upload a file. For that you 
need to have a TFTP client on that remote PC. You can for example use the tftpd32 tool, 
which can be found at the http://tftpd32.jounin.net address.

The figure below gives an overview on the tftpd32 tool.

Note: Make sure that the microSD™ card is plugged into the dedicated connector (CN16) prior to 
downloading/uploading a file from/to the STM3210C-EVAL board.
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Figure 6. tftpd32 tool

2.3.5 UDP/TCP server/client

This application requires at least two STM3210C-EVAL boards and a local network with a 
DHCP server. This means that you cannot run this application when you choose the static 
IP address setting or when you do not have a DHCP server on your network.

The application consists in setting one board as a server that waits for a client’s request to 
make the connection. When the connection is established, the client takes the control of the 
four LEDs on the server board.

To use this application properly you have to follow the steps below:

1. Connect a board to a local network, which should contain a DHCP server.

2. Start the board as a server by pressing the reset button, then keeping the key button 
pressed until the “Server selected” message appears on the LCD.

3. Connect another board to the same local network.

4. Start the second board as a client by resetting it.

The server will detect the new client and display its IP address.

The client will detect the server, establish a TCP connection with it and display the 
Server IP address.

5. On the client’s LCD, four squares appear, each dedicated to the control of an LED. 
Touch these squares to toggle the server’s LEDs.

To connect a new client, follow the above procedure from step 3.

Note: For the server/client application to function properly, the server board should be started 
before the client board(s).
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2.4 Demonstration footprint
Figure 7 describes the structure of the lwIP in the case where the raw API is used. It also 
shows how the lwIP interfaces with the application layer.

Figure 7. lwIP structure in the raw API

Note: The management of the STM32F107xx’s and STM3210C-EVAL’s additional resources is 
not presented in the above figure.

The memory manager and the packet manager are used by all the modules including the 
application layer. They provide access to the lwIP's heap and pool of buffers.

The modules surrounded by the blue line represent the mandatory part of the lwIP, in the 
case of the raw API. The mandatory modules are independent of the type of application.

The ICMP, TCP, UDP and DHCP modules are optional modules, they may be disabled. Each 
of them has a dedicated define located in the lwipopts.h file, that is used to either enable or 
disable it.

For example, if your application does not need the ICMP protocol, you can disable it by:

● removing the icmp.c from the source files

● changing the LWIP_ICMP define to 0 in the lwipopts.h file

Follow the same procedure to disable other optional modules.

The table below provides the demonstration footprint, calculated with the following 
configuration:

● 10 buffers of 1500 bytes that constitute the lwIP pool of buffers. These parameters are 
defined in the lwipopts.h file by PBUF_POOL_SIZE (10) and PBUF_POOL_BUFSIZE 
(1500)

● 20 Kbytes dedicated for the lwIP's heap and defined in the lwipopts.h file by 
MEM_SIZE

● 6 buffers of 1520 bytes dedicated to the Ethernet driver and defined in the ethernetif.c 
file.
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These values are provided for demonstration purposes only. So, if you want to port the 
current package and use it for your application, the above parameters should be adjusted to 
your needs.

         

Table 2. STM32F107xx lwIP demonstration footprint(1)

1. The footprint results are computed with the ARMCC compiler. Optimizations: -O2, One ELF section per 
function.

Modules Description
Flash memory 

(bytes)
SRAM 
(bytes)

Mandatory modules
Ethernet driver and interface, lwIP 
memory management and IP modules

7848 49590

TCP modules
TCP packet handling using the raw 
API

7562 80

UDP modules
UDP datagram handling using the raw 
API

856 4

Optional modules
ICMP 394 0

DHCP 3164 4

Application modules

Hello word 376 0

TFTP server 1467 1684

Web server 32607(2)

2. Includes 30 Kbytes of web pages.

4617(3)

3. Includes 4509 bytes that represent the ADC web page.

Server 328 0

Client 412 4

STM32 firmware STM32F107xx’s firmware library 2296 24

STM3210C-EVAL board STM3210C-EVAL dedicated files 8852(4)

4. Contains the LCD character definitions.

64

Main and system initialization main file and system initialization 2480 1624(5)

5. Contains the system heap and stack, defined in the startup_stm32f10x_cl.s file.

efsl File system 8338 0

Others Standard libraries 1884 105

Total 78764 57800



Conclusion AN3102

16/18 Doc ID 16620 Rev 1

3 Conclusion

This application note describes an STM32F107xx demonstration that implements the lwIP 
TCP/IP stack. The demonstration explores the capability of the STM32F107xx to generate 
and verify the IP, UDP, TCP and ICMP checksums by hardware. This feature reduces the 
CPU load and considerably improves the performance of your application.
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4 Revision history

         

Table 3. Document revision history

Date Revision Changes

23-Nov-2009 1 Initial release.
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