
January 2010 Doc ID 16243 Rev 1 1/16

TN0132
Technical note

STM32 Serial Wire Viewer and ETM
capabilities with EWARM 5.40 and MDK-ARM 3.70

Introduction
This document presents Serial Wire Viewer (SWV) and Embedded Trace Macrocell (ETM)
capabilities with these toolchains in various configurations:

● RVMDK 3.70 (RealView ® Microcontroller Development Kit from Keil™)

● EWARM 5.40 (Embedded Workbench® for ARM® from IAR Systems)

The STM32 provides a 4-bit ETM port as well as a Serial Wire Viewer port.

In general, the ETM is used to find problems using heavy duty trace debugging such as
looking for difficult bugs, while the SWV is used to provide a low cost method of obtaining
information from inside the MCU using ARM CoreSight™ technology.

www.st.com

http://www.st.com

SWV feature capabilities TN0132

2/16 Doc ID 16243 Rev 1

1 SWV feature capabilities

1.1 Introduction
Serial Wire Viewer is the ability of the ARM™ core to send real-time trace information out
via a single wire port called the Serial Wire Output (SWO). The trace information is in
several familiar formats such as:

● Instrumentation Trace Macrocell (ITM) for application driven trace source that supports
printf style debugging.

● Data Watchpoint and Trace (DWT) for variable monitoring and PC-sampling, which can
in turn be used to periodically output the PC (sampled) or various CPU internal
counters and to obtain profiling information from the target:

– Program Counter sampling.

– Data read and write cycles.

– Variable and peripheral values.

– Event counters.

– Exception entry and return.

● Timestamps and CPU cycles are emitted relative to packets.

Our focus is on the analysis of the serial wire port’s output information, in particular
configurations, and to highlight its capabilities of providing information and data at the high
speed that the STM32 runs at.

1.2 Context
This manual comes with a .zip file containing the subdirectories and files that make up the
core of application examples.

These application examples are configured at 72 MHz (maximum frequency of the STM32
MCU) and highlight the following SWV features:

● Data access

● Interrupt

● Program counter sampling

● Printf

Each application example’s folder contains:

● inc subfolder containing the example header files

● src subfolder containing the example source files

● project subfolder containing two projects that compile the example files:

– EWARMv5 containing the project for the EWARM toolchain

– ARM-MDK containing the project for the ARM-MDK toolchain

These examples are tested in the following hardware and software conditions:

● SW/HW toolchain: EWARM 5.40/JLINK v6 and ARM-MDK 3.70/ULINK2

● Target board: STM3210E-Eval Rev.A

● Office PC Pentium® 4 CPU 3.20 GHz, 504 MB of RAM, SP2

● SW clock autodetected

TN0132 SWV feature capabilities

Doc ID 16243 Rev 1 3/16

1.3 Program counter (PC) sample
The display of program counter values is useful for program flow change, profile analysis
and determining where the CPU might be caught in an infinite loop. Profile analysis gives a
helpful indication where the CPU is spending its time.

Nevertheless in some conditions, the SWO and toochains are not capable of providing every
program counter value because of the high speed that the STM32 runs at. Section 1.3.1 and
Section 1.3.2 illustrate the limitations detected with both ARM-MDK and EWARM toolchains
with particular configurations.

1.3.1 ARM-MDK / ULINK2 toolchain example

Running the PC Sampling example using the ARM-MDK toolchain highlights that if the PC
sampling prescaler is equal to 7*1024 (10044 samples per second), a hardware buffer
overrun occurs. This is due to the fact that the USB cannot accept data at the speed ULINK2
is sending it (see Figure 1).

Figure 1. ARM-MDK PC samples: Hardware buffer overrun

By decreasing the prescaler value until 3*1024 (23437 samples per second), an overflow
occurs due to the fact that the SWO communication channel is not fast enough to handle
that much data. Consequently, an overflow is detected as illustrated by Figure 2.

SWV feature capabilities TN0132

4/16 Doc ID 16243 Rev 1

Figure 2. ARM-MDK PC samples: Overflow

1.3.2 EWARM / J-Link toolchain example

Running the PC Sampling example using the EWARM toolchain highlights that when the
Rate (the number of samples per second) is set to 86538, the SWO communication
channel is not fast enough to handle that much data. Consequently, an Overflow is detected,
illustrated by Figure 3.

Figure 3. EWARM PC Samples: Overflow

1.4 Read and write data frames
Read and write data frames can be displayed giving the address of the responsible
instruction, the data value transferred, the data address and timestamps in both core cycles
and seconds. Figure 4 shows a series of data reads and writes showing these attributes.

TN0132 SWV feature capabilities

Doc ID 16243 Rev 1 5/16

1.4.1 ARM-MDK / ULINK2 toolchain example

Running the Data Access example using the ARM-MDK toolchain highlights that if a delay of
less than 310 µs is inserted before incrementing the j variable, a hardware buffer overrun
occurs. This is due to the fact that the USB cannot accept data access at the speed the
ULINK2 is sending it (see Figure 4).
By decreasing the delay until 155 µs, an overflow occurs because the SWO communication
channel is not fast enough to handle that much data access, for example, some values are
not displayed in the trace record window (see Figure 5). To avoid these two problems in the
Data Access example, the user should insert a delay greater than 310 µs.

Figure 4. ARM-MDK data read access: Hardware buffer overrun

Figure 5. ARM-MDK data read access: Overflow

SWV feature capabilities TN0132

6/16 Doc ID 16243 Rev 1

1.4.2 EWARM / J-Link toolchain example

Similar behavior is detected with the EWARM toolchain. In fact, to be able to perform a read
access followed by a write access on all j values in the Data Log window, a delay of about
38 µs must be inserted before incrementing j. If not, only the first and last values are
detected (see Figure 6).

Figure 6. EWARM data read access : Overflow

TN0132 SWV feature capabilities

Doc ID 16243 Rev 1 7/16

1.5 Printf
The Printf software example writes some data to a specific ITM address and CoreSight
automatically sends this data to the SWO port. This data can be displayed on the Serial
Wire Viewer window. This method is marginally intrusive to the user program and referred
to as printf “debugging”.

1.5.1 ARM-MDK / ULINK2 toolchain example

When running the example using the ARM-MDK toolchain, an overload is detected if we
send simultaneously 10 * 202 through the ITM port 0. Data is skipped from iterations 5 to 9
(see Figure 7). This is not an SWO related limitation but is due to the fact that the USB
cannot accept data access at the speed the ULINK2 is sending it.

Figure 7. ARM-MDK Printf: Hardware buffer overrun

1.5.2 EWARM / J-Link toolchain example

With the EWARM toolchain, all values sent via the SWO are captured by EWARM (no
overload is detected). The Trace record window can display the latest fifty lines of
submitted data (see Figure 8). The user can consult all submitted data stored in the log file.

Figure 8. EWARM Printf: Data display

SWV feature capabilities TN0132

8/16 Doc ID 16243 Rev 1

1.6 Exception trace dialog
The interrupt example aims to determine the number of times that the interrupt was entered
using 2 different methods:

1. Using the interrupt window: the SWV captures Systick exceptions’ return and exit.
These are timestamped and the exception number is then displayed.

2. Using a variable Tick incremented in the Systick interrupt handler.

1.6.1 ARM-MDK / ULINK2 toolchain example

After running the example using the ARM-MDK toolchain, it is easy to see that the Tick
variable’s value and the Systick exception value in the output window are similar only when
the interrupt periodicity is greater than or equal to 430 µs (see Figure 9). Otherwise some
interrupts are missed due to the hardware buffer overrun. By decreasing the interrupt
periodicity value until 160 µs, an Overflow is also detected (see Figure 10). To avoid these
two problems in the Exception example, the user in this case should insert a delay of greater
than 430 µs.

Figure 9. ARM-MDK Exception: Hardware buffer overrun

Figure 10. ARM-MDK Exception: Overflow

TN0132 SWV feature capabilities

Doc ID 16243 Rev 1 9/16

1.6.2 EWARM / J-Link toolchain example

Similar behavior is detected with the EWARM toolchain. In fact, a delay of 17.7 µs should be
inserted to guarantee that the SysTick exception value displayed in the Exception trace
window is the same as the Tick variable. If this condition is not verified, some exceptions
are missed, as illustrated by Figure 11.

Figure 11. EWARM Exception: Overflow

ETM feature capabilities TN0132

10/16 Doc ID 16243 Rev 1

2 ETM feature capabilities

2.1 Introduction
An embedded trace macrocell (ETM) is a real-time trace module providing program flow
tracing.

For the STM32, the ETM unit provides a high bandwidth instruction trace over a dedicated
4-bit high-speed trace bus using a special hardware probe such as an IAR J-Trace for a
Cortex-M3 or Signum JTAGjet-Trace.

This section describes the ETM features implemented by:

● ARM-MDK/JTAGjet-Trace

● EWARM/J-Trace CM3

The focus is on its ability to provide program flow information at the high speed that the
STM32 runs at.

2.2 Context
This user guide comes with a zip file containing the subdirectories and files that makes up
the core of application examples.

These application examples are configured at 72 MHz (maximum frequency of the STM32
MCU) and highlight the following trace features:

● Instruction timing

● Data tracing

● Function profiler

Each application example’s folder contains:

● inc subfolder containing the example header files

● src subfolder containing the example source files

● project subfolder containing two projects that compile the example files:

– EWARMv5 containing the project for the EWARM toolchain

– ARM-MDK containing the project for the ARM-MDK toolchain

These examples are tested in the following hardware and software conditions:

● SW/HW toolchain: EWARM 5.40/J-Trace CM3 and ARM-MDK 3.70/JTAGjet-Trace

● Target board: STM3210E-Eval Rev.A

● Office PC Pentium® 4 CPU 3.20 GHz, 504 MB of RAM, SP2

These examples use the following ETM options:

● Stall processor on FIFO full

● Trace buffer size: 0x400000

● Trace port mode: Normal, half-rate clocking.

TN0132 ETM feature capabilities

Doc ID 16243 Rev 1 11/16

2.3 Instruction timing
The ETM allows reconstruction of program execution which is useful for debugging and
especially for detecting rare bugs source.

J-Trace CM3 and JTAGjet-Trace have a 4 MB buffer for trace data storage. Since for Cortex-
M3 one trace frame corresponds to approximately 1 byte, the buffer overflows after
approximately 4 million trace frames.

The instruction timing may be inferred from the timestamp of the transmitted frame.

2.3.1 EWARM / J-Trace toolchain example

This feature is not supported in EWARM 5.40/J-Trace CM3.

2.3.2 ARM-MDK / JTAGjet-Trace toolchain example

The trace window contains the timestamp TStamp field. It shows useful information on the
traced code such as the execution time (in cycles) for each instruction.

After running the Instruction Timing example, where every physical sample contains the
same 6 instructions, logically, the same execution time should be found for each sample.
However, this is not the case, see Figure 12.

Generally, the timestamp cannot be relied upon for very short times, but the error of +/- 16
cycles has no real effect once longer times are being observed.

Figure 12. ETM Trace window in ARM-MDK: Timestamps

ETM feature capabilities TN0132

12/16 Doc ID 16243 Rev 1

2.4 Data tracing
Data tracing is a useful feature that allows the debugger to trace variable values or
addresses during program execution in addition to the program flow. The STM32 ETM does
not have data tracing capability. Nevertheless, data values and/or addresses can be traced
by controlling the DWT and ITM on-chip modules.

2.4.1 EWARM / J-Trace toolchain example

This feature is not supported in EWARM 5.40/J-Trace CM3.

2.4.2 ARM-MDK / JTAGjet-Trace toolchain example

Using JTAGjet, it is possible to insert ITM trace data in the trace stream since it shares the
same trace port with the ETM.

In the Data Tracing example, the ITM unit is configured to send data values when accessing
the Counter variable. Meanwhile, the two trace sources (ITM and ETM) may get out of
phase due to FIFO latency. The analysis of the code in the ETM trace window, see
Figure 13, shows that the STR instruction is displayed after an ITM write record.

Figure 13. ETM Trace window in ARM-MDK

2.5 Function profiler
The function profiler helps find the functions where most time is spent during application
execution, and the number of calls of each function.

The following example aims to determine the number of times that a function was called
using 2 different ways:

1. Using the function profiler.

2. Using a variable Tick incremented in the function interrupt handler

2.5.1 ARM-MDK / JTAGjet-Trace toolchain example

This feature is not supported in ARM-MDK 3.70/JTAGjet-Trace.

TN0132 ETM feature capabilities

Doc ID 16243 Rev 1 13/16

2.5.2 EWARM / J-Trace toolchain example

Using EWARM 5.40, the function profiler is available using SWV with J-Link and ETM trace
with J-Trace. If the ETM is used, it shows also the number of calls of each function in
addition to the time spent inside it.

Figure 14 shows the watch window with the Tick variable which is incremented every
SysTickHandler() entry, and the function profiler window of the Function Profiler
example. SysTickHandler() is the handler of the systick exception which occurs
periodically (every 1 ms).

As illustrated by Figure 14, the number of SysTickHandler() calls is missed. This is due
to the fact that the function profiler is based on the last ETM trace data collected, which does
not contain all the function entries.

Figure 14. Function profiler window in EWARM

If the SysTick exception occurs more frequently (every 10 µs for example), the difference is
be more noticeable as shown in Figure 15.

Figure 15. Function profiler window in EWARM

To avoid this discordance, the user should use a pre-filtered trace using the Trace start
and Trace stop breakpoints to limit the amount of trace data.

Conclusion TN0132

14/16 Doc ID 16243 Rev 1

3 Conclusion

Regarding the SWV feature, clearly the single serial wire port is not able to provide all trace
information, because of the high speed of the STM32. Nevertheless, a statistical sampling
indication of performance analysis is possible with both EWARM and ARM-MDK toolchains
which is sufficiently adequate for profile analysis for the SWV feature.

Concerning the ETM feature, the buffer size of the trace capture device limits the instruction
trace capability, nonetheless the STM32 ETM is able to provide an efficient debug and
instruction trace especially when it is combined with the ITM trace to obtain a complete
debug solution.

TN0132 Revision history

Doc ID 16243 Rev 1 15/16

4 Revision history

Table 1. Document revision history

Date Revision Changes

27-Jan-2010 1 Initial release.

TN0132

16/16 Doc ID 16243 Rev 1

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

	1 SWV feature capabilities
	1.1 Introduction
	1.2 Context
	1.3 Program counter (PC) sample
	1.3.1 ARM-MDK / ULINK2 toolchain example
	Figure 1. ARM-MDK PC samples: Hardware buffer overrun
	Figure 2. ARM-MDK PC samples: Overflow

	1.3.2 EWARM / J-Link toolchain example
	Figure 3. EWARM PC Samples: Overflow

	1.4 Read and write data frames
	1.4.1 ARM-MDK / ULINK2 toolchain example
	Figure 4. ARM-MDK data read access: Hardware buffer overrun
	Figure 5. ARM-MDK data read access: Overflow

	1.4.2 EWARM / J-Link toolchain example
	Figure 6. EWARM data read access : Overflow

	1.5 Printf
	1.5.1 ARM-MDK / ULINK2 toolchain example
	Figure 7. ARM-MDK Printf: Hardware buffer overrun

	1.5.2 EWARM / J-Link toolchain example
	Figure 8. EWARM Printf: Data display

	1.6 Exception trace dialog
	1.6.1 ARM-MDK / ULINK2 toolchain example
	Figure 9. ARM-MDK Exception: Hardware buffer overrun
	Figure 10. ARM-MDK Exception: Overflow

	1.6.2 EWARM / J-Link toolchain example
	Figure 11. EWARM Exception: Overflow

	2 ETM feature capabilities
	2.1 Introduction
	2.2 Context
	2.3 Instruction timing
	2.3.1 EWARM / J-Trace toolchain example
	2.3.2 ARM-MDK / JTAGjet-Trace toolchain example
	Figure 12. ETM Trace window in ARM-MDK: Timestamps

	2.4 Data tracing
	2.4.1 EWARM / J-Trace toolchain example
	2.4.2 ARM-MDK / JTAGjet-Trace toolchain example
	Figure 13. ETM Trace window in ARM-MDK

	2.5 Function profiler
	2.5.1 ARM-MDK / JTAGjet-Trace toolchain example
	2.5.2 EWARM / J-Trace toolchain example
	Figure 14. Function profiler window in EWARM
	Figure 15. Function profiler window in EWARM

	3 Conclusion
	4 Revision history
	Table 1. Document revision history

