‘7_[TNO132

Technical note

STM32 Serial Wire Viewer and ETM
capabilities with EWARM 5.40 and MDK-ARM 3.70

Introduction

This document presents Serial Wire Viewer (SWV) and Embedded Trace Macrocell (ETM)
capabilities with these toolchains in various configurations:

e RVMDK 3.70 (RealView ® Microcontroller Development Kit from Keil™)

e EWARM 5.40 (Embedded Workbench® for ARM® from IAR Systems)

The STM32 provides a 4-bit ETM port as well as a Serial Wire Viewer port.

In general, the ETM is used to find problems using heavy duty trace debugging such as
looking for difficult bugs, while the SWV is used to provide a low cost method of obtaining
information from inside the MCU using ARM CoreSight™ technology.

January 2010 Doc ID 16243 Rev 1 1/16

Www.st.com

http://www.st.com

SWYV feature capabilities TNO0132

1

1.1

1.2

2/16

SWV feature capabilities

Introduction

Serial Wire Viewer is the ability of the ARM™ core to send real-time trace information out
via a single wire port called the Serial Wire Output (SWO). The trace information is in
several familiar formats such as:

e Instrumentation Trace Macrocell (ITM) for application driven trace source that supports
printf style debugging.

e Data Watchpoint and Trace (DWT) for variable monitoring and PC-sampling, which can
in turn be used to periodically output the PC (sampled) or various CPU internal
counters and to obtain profiling information from the target:

— Program Counter sampling.
— Data read and write cycles.
— Variable and peripheral values.
— Event counters.
— Exception entry and return.
e Timestamps and CPU cycles are emitted relative to packets.
Our focus is on the analysis of the serial wire port’s output information, in particular

configurations, and to highlight its capabilities of providing information and data at the high
speed that the STM32 runs at.

Context

This manual comes with a .zip file containing the subdirectories and files that make up the
core of application examples.

These application examples are configured at 72 MHz (maximum frequency of the STM32
MCU) and highlight the following SWV features:

e Data access

e Interrupt

e Program counter sampling

e Printf

Each application example’s folder contains:
e inc subfolder containing the example header files
e src subfolder containing the example source files
e project subfolder containing two projects that compile the example files:
— EWARMVS5 containing the project for the EWARM toolchain
— ARM-MDK containing the project for the ARM-MDK toolchain
These examples are tested in the following hardware and software conditions:
e SW/HW toolchain: EWARM 5.40/JLINK v6 and ARM-MDK 3.70/ULINK2
e Target board: STM3210E-Eval Rev.A
e Office PC Pentium® 4 CPU 3.20 GHz, 504 MB of RAM, SP2
e SW clock autodetected

Doc ID 16243 Rev 1 KYI

TNO132

SWYV feature capabilities

1.3

13.1

Program counter (PC) sample

The display of program counter values is useful for program flow change, profile analysis
and determining where the CPU might be caught in an infinite loop. Profile analysis gives a
helpful indication where the CPU is spending its time.

Nevertheless in some conditions, the SWO and toochains are not capable of providing every
program counter value because of the high speed that the STM32 runs at. Section 1.3.1 and
Section 1.3.2 illustrate the limitations detected with both ARM-MDK and EWARM toolchains
with particular configurations.

ARM-MDK / ULINK2 toolchain example

Running the PC Sampling example using the ARM-MDK toolchain highlights that if the PC
sampling prescaler is equal to 71024 (10044 samples per second), a hardware buffer
overrun occurs. This is due to the fact that the USB cannot accept data at the speed ULINK2
is sending it (see Figure 1).

Figure 1. ARM-MDK PC samples: Hardware buffer overrun

Trace Records @

Type | Ot | Mum | Address | Data I PC | Dy | Cycles | Time[z] i]
PC Sample 0200028CH E293 0.00008743
PC Sample O2000284H 12443 0.00017282
PC Sample 0200023EH 18587 0.00025815
PC Sample 0200023EH 24731 0.00034343
PC Sample 02000284H 30875 0.00042882
PC Sample Q200023EH 37019 0.00051415
PC Sample 0200023EH 43163 0.00053543
PC Sample 0200023CH 43307 0.000684582
PC Sample 02000284H 55451 0.00077015
PC Sample Q200023EH E1555 0.00035543
PC Sample 0200023EH B7733 0.00034082
PC Sample 020002584H V3883 0.00102615
PC Sample 0200023CH 80027 000111143
PC Sample O2000284H 86171 0.00119682
PC Sample 0200023EH 92315 0.00128215
PC Sample 0200023EH 98453 0.001 36743
PC Sample 02000284H 104603 0.00145282
PC Sample Q200023EH 110747 0.00153815
PC Sample 0200023EH 116891 0.00162343
PC Sample 0200023CH 123035 0.001 70882 ﬂ
Ready (Trace: HW Buffer Crerrun) JULIMK Cortex Debugger

By decreasing the prescaler value until 3*1024 (23437 samples per second), an overflow
occurs due to the fact that the SWO communication channel is not fast enough to handle
that much data. Consequently, an overflow is detected as illustrated by Figure 2.

Doc ID 16243 Rev 1 3/16

SWYV feature capabilities TNO0132

Figure 2. ARM-MDK PC samples: Overflow

Tupe | Owf | Mumn | Address | Data | FC | Dly | Cucles | Time[z] il
ITh — 23 08C21701H 1401 0.000071946
PC Sample bs 0B0003BEH = 871553 0.01210490
PC Sample bs 0B0003BEH = 871553 0.01210490
PC Sample 080003C2H ¥ 871553 0.01210490
PC Sample bs 080003C2H ¥ 871553 0.01210490
PC Sample bs 080003C2H ¥ 871553 0.01210490
PC Sample 080003C2H ¥ 871553 0.01210490
PC Sample bs 080003C2H ¥ 871553 0.01210490
PC Sample bs 080003C2H ¥ 871553 0.01210490
PC Sample bs 080003C2H ¥ 871553 0.01210490
PC Sample 080003C0OH ¥ 871553 0.01210490
PC Sample bs 080003C2H ¥ 871553 0.01210490
PC Sample bs 080003C2H ¥ 871553 0.01210490
PC Sample bs 080003C2H ¥ 871553 0.01210490
PC Sample 080003C0OH ¥ 871553 0.01210490
PC Sample bs 080003C2H ¥ 871553 0.01210490
PC Sample bs 080003C2H ¥ 871553 0.01210490
PC Sample bs 080003C2H ¥ 871553 0.01210490
PC Sample 0B0003BEH = 871553 0.01210490
PC Sample bs 080003C0OH ¥ 871553 0.01210490 ﬂ
L

1.3.2 EWARM / J-Link toolchain example

Running the PC Sampling example using the EWARM toolchain highlights that when the
Rate (the number of samples per second) is set to 86538, the SWO communication
channel is not fast enough to handle that much data. Consequently, an Overflow is detected,
illustrated by Figure 3.

Figure 3. EWARM PC Samples: Overflow

OXBASYHE
Index | SW0 Packet | Cycles | Event | Yalue | Trace e |
yvhile{Timinglelay |= 0});
??helay 0
014413 1784030008 97911680 FPC 0=x08000384 1DE Rl1, [RO]
014414 70 97911680 OVERFLOW
while({TiningDelay |= 0
??Delay_0:
014415 1784030008 97911680 PC 0=08000384 LDR R1. [ED]
014416 178E030008 97911680 FC 0x0800038E ENE ?Delay 0
014417 70 97911680 OVERFLOW
014418 17BC030008 97911680 BC 0x0800D38BC CHF R1, #0=0
014419 178E030008 97911680 \PC /) 0Dx080003BE ENE 77Delay_0
while({TiningDelay |= 0
Pelay_0: =
Ni442n 17RANNNNA 92911A8N P nvnﬁnlnnma TNR Ri IRMT N
4 >
1.4 Read and write data frames

Read and write data frames can be displayed giving the address of the responsible
instruction, the data value transferred, the data address and timestamps in both core cycles
and seconds. Figure 4 shows a series of data reads and writes showing these attributes.

4/16 Doc ID 16243 Rev 1 I‘!I

TNO132

SWYV feature capabilities

14.1

ARM-MDK / ULINK2 toolchain example

Running the Data Access example using the ARM-MDK toolchain highlights that if a delay of
less than 310 ps is inserted before incrementing the § variable, a hardware buffer overrun
occurs. This is due to the fact that the USB cannot accept data access at the speed the
ULINK2 is sending it (see Figure 4).

By decreasing the delay until 155 us, an overflow occurs because the SWO communication
channel is not fast enough to handle that much data access, for example, some values are
not displayed in the trace record window (see Figure 5). To avoid these two problems in the
Data Access example, the user should insert a delay greater than 310 ps.

Figure 4. ARM-MDK data read access: Hardware buffer overrun

Trace Records BJ

Tupe | Of | Mum | Address | Data | PC | Dy | Cucles | Tirne[s] ﬂ

Data Read 20000004H (FODOFOVH 0B000E7EH

Exception 7797 1]

Data Read 20000004H (DODOFEEH

D ata ‘wiite 20000004H (DODOFEFH 0B000E70H

Data Read 20000004H (DODOFEFH 0B000E7EH

D ata ‘wiite 20000004H (DODOFFOH 0B000E70H

Data Read 20000004H (DODOFFOH 0B000E7EH

D ata ‘wiite 20000004H (DODOFF1H 0B000E70H

Data Read 20000004H (DODOFF1H 0B000E7EH

D ata ‘wiite 20000004H (DODOF72H 0B000E70H

Data Read 20000004H (DODOF72H 0B000E7EH —

D ata ‘wiite 20000004H (DODOF73H 0B000E70H

Data Read 20000004H (DODOF73H 0B000E7EH

D ata ‘wiite 20000004H (DODOF74H 0B000E70H

Data Read 20000004H (DODOF74H 0B000E7EH

D ata ‘wiite 20000004H (DODOF7EH 0B000E70H

Data Read 20000004H (DODOF7EH 0B000E7EH

D ata ‘wiite 20000004H (DODOF7EH 0B000E70H

Data Read 20000004H (DODOF7EH 0B000E7EH

D ata ‘wiite 20000004H (DODOFF7H 0B000E70H ﬂ
Ready (Trace: Hw' Buffer Overrun) ILIME Cartex Debugger

Figure 5. ARM-MDK data read access: Overflow

Trace Records X
Tupe | Of | Mum | Address | Data | PC | Dy | Cucles | Tirne[s] i‘
ITh 0 00H 1410 0.00001958
Data Read 20000008H 00000001H 1410 0.00001958
Drata wirite e 20000008H 00000002H bs 3937 0.00005468
Drata wirite b 20000008H 00000003H bs 11997 0.00016663
Data Read 20000008H 00000003H bs 20677 0.00028718

atawiite 20000008H 00000004H bs 20677 0.00028718
Drata 'wirite b 20000008H 00000005H bs 26877 0.00037329
Data Read 20000008H 00000005H bs 35557 0.000459385
20000008H 00000006H bs 35557 0.000459385
[ata wiite b 20000008H 00000007H bs 41757 0.00057936
Data Read 20000008H 00000007H bs 50437 0.00070051
ata wirite 20000008H 00000008H bs 50437 0.00070051
Drata wirite b 20000008H 00000009H bs BEE3Y 0.00078663
ata 'wiite b 20000008H 00000004H bs E2217 0.00086412
Data Aead 20000008H 00000004H bs 70897 0.00098468
20000008H 0000000BH bs 70897 0.00098468
Drata wirite b 20000008H 0000000CH bs 78957 0.00109662
Drata wirite b 20000008H 0a0a0aocH bs 84537 0.00117413
Drata wirite b 20000008H 0000000EH bs 93217 0.001253468
Drata 'wiite L) 20000008H 0000000FH bs 98797 00037218 o |
Doc ID 16243 Rev 1 5/16

SWYV feature capabilities

TNO132

1.4.2

6/16

EWARM / J-Link toolchain example

Similar behavior is detected with the EWARM toolchain. In fact, to be able to perform a read
access followed by a write access on all § values in the Data Log window, a delay of about
38 ps must be inserted before incrementing j. If not, only the first and last values are

detected (see Figure 6).

Figure 6. EWARM dataread access : Overflow

b4

Data Log (@ j [ReadAite] [0x20000405 - 0x20000405]

Ereakpoints

Debug Log | Build Breakpoints | Find In WO Trace

Time | Program Counter |

f88us 0=08000176
Fofus 0=z08000174 -

ST Cverf low

Fofus 0=z08000174 -

ST Cverf low

fffus —
ST Cverf low

Fifus Overflow

ST Cverf low

GG Ges Overflow

SR Cverf low

HRHHDHH DD DD D

Address

@ 0x20000408+7
@ 0x20000408+7
@ 0x20000408+7

@ 0=z20000408+7

a
m
Daka Log | Daka Log Surmary

Ready

Doc ID 16243 Rev 1

TNO132

SWYV feature capabilities

1.5

151

15.2

Printf

The Printf software example writes some data to a specific ITM address and CoreSight
automatically sends this data to the SWO port. This data can be displayed on the Serial

Wire Viewer window. This method is marginally intrusive to the user program and referred
to as printf “debugging”.

ARM-MDK / ULINK2 toolchain example

When running the example using the ARM-MDK toolchain, an overload is detected if we
send simultaneously 10 * 202 through the ITM port 0. Data is skipped from iterations 5 to 9

(see Figure 7). This is not an SWO related limitation but is due to the fact that the USB
cannot accept data access at the speed the ULINK2 is sending it.

Figure 7. ARM-MDK Printf: Hardware buffer overrun

123456789 123456789
123456789 123456789
1
123456789 123456789
123456789 123456789
2
123456789 123456789
123456789 123456789
3
123456789 123456789
123456789 123456789
4
12356789 1234568789

10

123456789
123456789

123456789
123456789

123456789
123456789

123456789
123456789

123456789

123456789
123456789

123456789
123456789

123456789
123456789

123456789
123456789

123456789

123456789
123456789

123456789
123456789

123456789
123456789

123456789
123456789

123456789

123456789
123456789

123456789
123456789

123456789
123456789

123456789
123456789

123456789

123456789
123456789

123456789
123456789

123456789
123456789

123456789
123456789

123456789

123456789
123456789

123456789
123456789

123456789
123456789

123456789
123456789

123456789

123
123

123
123

123
123

123
123

123

123[A56123456789 1234567859 123456789 1234567359 123456789 1234567389 123456789 1234567

main.c 320 |[E] Disaszembly = (TM Viewer

EWARM / J-Link toolchain example

With the EWARM toolchain, all values sent via the SWO are captured by EWARM (no
overload is detected). The Trace record window can display the latest fifty lines of
submitted data (see Figure 8). The user can consult all submitted data stored in the log file.

Figure 8. EWARM Printf: Data display

123456784 123456789 123456739 1234567689 123456789 123456789 123456789 123456789 123456785 "

123456784 123456789 123456759 1234567859 123456789 123456789 1234567849 123456789 123486789

0)

123456785 123456789 123456785 123456783 123456783 123466789 123456789 123456789 123456789
1234567859 123456769 123456789 123456789 123456789 123456789 123456789 123456789 123456789
11

123450788 123486789 123450780 123486780 123406780 123486789 123466789 123450789 123486789
123456789 123456709 123456789 123456789 123456789 123456789 123456789 123456789 123456789
12

123456780 123456789 123456759 183456780 123456789 123456750 123456789 123456789 123456789
123456789 123456789 123456789 123456789 123456789 123456789 123456789 123456789 123456789
13

1234567859 123456769 123456789 123456789 123456789 123456789 123456789 123456789 123456789

1234567849 123456789 123456759 123456789 123456789 123456759 123456789 123456789 123456789 " »

< *

Doc ID 16243 Rev 1

7/16

SWYV feature capabilities TNO0132

1.6

16.1

8/16

Exception trace dialog

The interrupt example aims to determine the number of times that the interrupt was entered
using 2 different methods:

1. Using the interrupt window: the SWV captures Systick exceptions’ return and exit.
These are timestamped and the exception number is then displayed.

2. Using a variable Tick incremented in the Systick interrupt handler.

ARM-MDK / ULINK2 toolchain example

After running the example using the ARM-MDK toolchain, it is easy to see that the Tick
variable’s value and the Systick exception value in the output window are similar only when
the interrupt periodicity is greater than or equal to 430 us (see Figure 9). Otherwise some
interrupts are missed due to the hardware buffer overrun. By decreasing the interrupt
periodicity value until 160 ps, an Overflow is also detected (see Figure 10). To avoid these
two problems in the Exception example, the user in this case should insert a delay of greater
than 430 ps.

Figure 9. ARM-MDK Exception: Hardware buffer overrun

Hum | MName | Count | Total Time | Min Time In | ax Time |n | Min Tirne Dut | hd & Tirne: Clut | First Time [s] | Last Time [5]

3 HardF ault 0 242,403 us

4 tMemtd anage 0 Os

5 BuzFaulk 0 0=

[|JzageFault 0 Oz B

1 SV Call 0 Oz

12 Dbghon 0 0=

14 Pend5y 0 Oz

15 SpsTick 21268 1863 ms 5558En: 142222 us [IE: 13333 0.00024240 4 69187292

16 ExtiRO 0 0 Oz

17 ExtlRO 1 0 Oz

18 ExtlRO 2 0 Oz

15 ExtlRO 3 0 0z

20 ExtlRO 4 0 0z

21 ExtlRO 5 0 Oz

22 ExtlRO 6 0 Os

23 ExtlRO 7 0 03z M

< >
Ready (Trace: Hw' Buffer Overrun) LILIMEK Corkex Debugger tl: 6. 367S16A

Figure 10. ARM-MDK Exception: Overflow

Mum | Mame | Count | Total Time | fin Time In | tdax Time In | i Time Dt | M ax Time Out | Firgt Time [s] | Last
2 &1 1] Oz
3 HardF ault 1} 0=
4 temtd anage 1] Oz
A BuszFault 1} 0=
B |JzageF ault 1] Oz
1 SvCal 1] Oz
12 Dbagkdan 1] Oz
14 PendSYy' a Oz
15 SysTick 1866 ms 416667 n: 416667 ns 501917 us 502.028 us 0.00058815 224

16 ExtiRO 0O a 0z
17 ExtIRO1 o 0z
18 ExtRO 2 o 0z
13 ExtRO 3 o 0z
20 ExtRO 4 o 0z
21 ExtRO & o 0z
22 ExtIRO G o 0z
23 ExtRO 7 a 0z
5

M ame h Walue
Ti 4509

Doc ID 16243 Rev 1 I‘!I

TNO132 SWYV feature capabilities

1.6.2 EWARM / J-Link toolchain example

Similar behavior is detected with the EWARM toolchain. In fact, a delay of 17.7 us should be
inserted to guarantee that the SysTick exception value displayed in the Exception trace
window is the same as the Tick variable. If this condition is not verified, some exceptions
are missed, as illustrated by Figure 11.

Figure 11. EWARM Exception: Overflow

Expression Yalue Location Type
Tick (x20000408 w3z
z Cebug Log |Buld Live Watch | Live Wakch
* | Interrupt | Cuunt| First Time Tatal Time Fastest Slowest
SysTick [2422 211161 . 111us B18970.6. .. 0.472us 339 .972us
Approximative time count: 4340
Cherflow count, 3356
Interrupt Log Inkerrupt Log Surmmary
ToXBESYHE
Indlex | S0 Packet | Cycles Ewvent Walue Trace
012587 0E0Q30 59768217 Feturn to Exception ... O
012588 FOBF7O 59782616 Packst and Timestamp. .. 14399
012589 0EOF10 59782616 Enter Ezception Humber 15
01zs9o0 70 597826146 OYERFLOW
012551 0EQO030 B9782616 Return to Exception ... O
012592 FOBF70 59797015 Packet and Timestamp... 14399
012593 COFF887A 61797014 Timestanp synch 1999999
Bl
Ready

IYI Doc ID 16243 Rev 1 9/16

ETM feature capabilities TNO132

2

2.1

2.2

10/16

ETM feature capabilities

Introduction

An embedded trace macrocell (ETM) is a real-time trace module providing program flow
tracing.

For the STM32, the ETM unit provides a high bandwidth instruction trace over a dedicated
4-bit high-speed trace bus using a special hardware probe such as an IAR J-Trace for a
Cortex-M3 or Signum JTAGjet-Trace.

This section describes the ETM features implemented by:

e ARM-MDK/JTAGjet-Trace

e EWARM/J-Trace CM3

The focus is on its ability to provide program flow information at the high speed that the
STM32 runs at.

Context

This user guide comes with a zip file containing the subdirectories and files that makes up
the core of application examples.

These application examples are configured at 72 MHz (maximum frequency of the STM32
MCU) and highlight the following trace features:

e Instruction timing

e Data tracing

e Function profiler

Each application example’s folder contains:

e inc subfolder containing the example header files

e src subfolder containing the example source files

e project subfolder containing two projects that compile the example files:
— EWARMVS containing the project for the EWARM toolchain
— ARM-MDK containing the project for the ARM-MDK toolchain

These examples are tested in the following hardware and software conditions:

e SW/HW toolchain: EWARM 5.40/J-Trace CM3 and ARM-MDK 3.70/JTAGjet-Trace
e Target board: STM3210E-Eval Rev.A

e Office PC Pentium® 4 CPU 3.20 GHz, 504 MB of RAM, SP2

These examples use the following ETM options:
e Stall processor on FIFO full
e Trace buffer size: 0x400000
e Trace port mode: Normal, half-rate clocking.

Doc ID 16243 Rev 1 KYI

TNO132 ETM feature capabilities
2.3 Instruction timing
The ETM allows reconstruction of program execution which is useful for debugging and
especially for detecting rare bugs source.
J-Trace CM3 and JTAGjet-Trace have a 4 MB buffer for trace data storage. Since for Cortex-
M3 one trace frame corresponds to approximately 1 byte, the buffer overflows after
approximately 4 million trace frames.
The instruction timing may be inferred from the timestamp of the transmitted frame.
2.3.1 EWARM / J-Trace toolchain example
This feature is not supported in EWARM 5.40/J-Trace CM3.
2.3.2 ARM-MDK / JTAGjet-Trace toolchain example
The trace window contains the timestamp TStamp field. It shows useful information on the
traced code such as the execution time (in cycles) for each instruction.
After running the Instruction Timing example, where every physical sample contains the
same 6 instructions, logically, the same execution time should be found for each sample.
However, this is not the case, see Figure 12.
Generally, the timestamp cannot be relied upon for very short times, but the error of +/- 16
cycles has no real effect once longer times are being observed.
Figure 12. ETM Trace window in ARM-MDK: Timestamps
Eonllol...l Enahlel Shart | Flesumel Clear | i]lllueuy - Ll I— Quer_l,l.._| o FHtef._.| Fielcls...l Sa\»e..l
[mM_[ImM...[PC | Excpt__ | Disas | Source | TStamp [d1] [cyc] | MemAdd 4
#2711409-6 0800060C BCC 0=3000600 +6_
#2711421 08000600 LDR R1.[R4.#0zc] +1
#2711421-1 05000802 CHMF R1.ROD +1
#2711421-2 08000604 +1
#2711421/3 08000606 LDR R1,[R4. #0xc) +1 > 8ayeles
#271142174 ggoooe0e ADD E1,R1,#0x1 +1
#2711421-5 08000604 STR R1.[R4, #0xc) +1
#271142176 0800060C BCC 0=2000600 +24
#2711429 05000600 LDE R1,[R4.#0x=c] +1
#2711429-1 0e000802 CHP R1.RO +1
#2711429-2 08000604 +1
#2711429.3 08000606 LDR R1, [R4,#0xc] +1 12 cycles
#2711429-4 08000608 ADD R1.R1,#0=x1 +1
#2711429-5 08000604 STR R1.[R4,#0zc] +1
#271142976 0800060C BCC O=8000600 +6./
#2711441 0e000s00 LDR R1, [R4, #0xc] +1
#2711441-1 08000602 CHP R1.RD +1
#2711441-2 08000604 +1
#2711441-3 08000606 LDR R1.[R4.#0xc] #1 ~ 12 cycles
#2711441-4 0g000s08 ADD R1.R1.#0=xl +1
#2711441-5 08000604 STR R1.[R4.#0xc] +1
#2711441786 0800060C BCC Ox8000600 +S_<
#2711453 08000600 LDR R1.[R4, #0xc] +1
#2711453-1 08000802 CHP R1.RO +1
#2711453-2 08000604 +1
#2711453-3 08000606 LDR R1, [R4.#0xc] +1 ~ 16 cycles
#2711453-4 08000608 ADD R1.R1.#0x1 +1
#2711453-5 08000604 STR R1, [R4, #0=c] +1
#271145376 0800060C BCC 0xB8000600 +10) v
£ b
[Status: Notactive,Full Trace Full (.J.CIJ%) Trace Clock: 36.00MHz
17 Doc ID 16243 Rev 1 11/16

ETM feature capabilities TNO0132

2.4 Data tracing

Data tracing is a useful feature that allows the debugger to trace variable values or
addresses during program execution in addition to the program flow. The STM32 ETM does
not have data tracing capability. Nevertheless, data values and/or addresses can be traced
by controlling the DWT and ITM on-chip modules.

2.4.1 EWARM / J-Trace toolchain example
This feature is not supported in EWARM 5.40/J-Trace CM3.

2.4.2 ARM-MDK / JTAGjet-Trace toolchain example

Using JTAGjet, it is possible to insert ITM trace data in the trace stream since it shares the
same trace port with the ETM.

In the Data Tracing example, the ITM unit is configured to send data values when accessing
the Counter variable. Meanwhile, the two trace sources (ITM and ETM) may get out of
phase due to FIFO latency. The analysis of the code in the ETM trace window, see

Figure 13, shows that the STR instruction is displayed after an ITM write record.

Figure 13. ETM Trace window in ARM-MDK

Contiol. | Enable Stat | Resume| Clear j[ﬂueq,l _:[j [Query... T Filter... Fields...l Save..
it ITM ITMPar | PC E... | Disas R.| MemData | Source
#4194221 08000644 [=]1BCC 0=x8000598
#4194225 DataValue Comp0 Rd 00000000
#4194235 DataValue Compl JRd__ 00000000
#4194245 DataV¥Value Comp0 Wy 00000001 |
#4194261 080006AE LDR RO, [R4,#0x10] if (Counter<l)
#4194261-1 08000648 CHP RO, #0
#4194261-2 08000644 Counter++;
#419426173 080006AC LDR RO, [R4,#0x10]
#4194261-4 080006AE RO.EOD. #0x1
#4194261-5 080006E0 STR RO.[R4 . #0x10]
#419426176 ng00o0e&B2 BT 0x80006b2 while (1):
4
.s-‘.atus: Motactive, Full Trace Full(100%) Trace O
2.5 Function profiler

The function profiler helps find the functions where most time is spent during application
execution, and the number of calls of each function.

The following example aims to determine the number of times that a function was called
using 2 different ways:

1. Using the function profiler.

2. Using a variable Tick incremented in the function interrupt handler

251 ARM-MDK / JTAGjet-Trace toolchain example
This feature is not supported in ARM-MDK 3.70/JTAGjet-Trace.

12/16 Doc ID 16243 Rev 1 I‘!I

TNO132 ETM feature capabilities

2.5.2 EWARM / J-Trace toolchain example

Using EWARM 5.40, the function profiler is available using SWV with J-Link and ETM trace
with J-Trace. If the ETM is used, it shows also the number of calls of each function in
addition to the time spent inside it.

Figure 14 shows the watch window with the Tick variable which is incremented every
SysTickHandler () entry, and the function profiler window of the Function Profiler
example. SysTickHandler () is the handler of the systick exception which occurs
periodically (every 1 ms).

As illustrated by Figure 14, the number of SysTickHandler () calls is missed. This is due
to the fact that the function profiler is based on the last ETM trace data collected, which does
not contain all the function entries.

Figure 14. Function profiler window in EWARM

Expression | Value _Location | Type
Tick (200) 120000402 wud2
5 =

- [N
20 5|@|F] ~

Function | Calls | Flat Tirme | Flat Tirnea (‘.‘fa)| Acc Time | Acc. Time ()
SF1Z_IRQHandlar) _\]] 0,00 i 0,00
SFI3_IROHandlar() £ n] 0.00 i] n.on
SvCHandler) . 0 0 0.00 1] n.oo

M= SysTickHandler]) (116} 1] 0.01 azg n.02
k= SysTick_CounterCmd{u32) 0 D 0.00 0 b.00
:: SysTick_ITCanfig{Funchonal State) n 0 o.0n 1] n.on
_'; SysTick_SetReload(u3?) i 0 a.an i} 0.00
:f‘:_ ‘DebugLog |Buld Function Profiler [Brestpoies [ETM Trace

If the SysTick exception occurs more frequently (every 10 ps for example), the difference is
be more noticeable as shown in Figure 15.

Figure 15. Function profiler window in EWARM

= Expression Value Location Type
Tick ((23094) 0x2000040C wu32
[0 5|@E
Function N Calls Flat Time | Flat Time (%) | Acc. Time | Acc. Time (%

SPI2_IRQHandler() 0 0 0.00 0 0.00
SPI3_IRQHandler) ~ |0 0 0.00 0 0.00
SVCHandler() L0 _ 0 0.00 0 0.00
ME SysTickHandler) (11522) 57610 1.56 92176 2.49
' SysTick_CounterCmdl{u32) 0 0 0.00 0 0.00
SysTick_|ITConfig(FunctionalState) 0 0 0.00 0 0.00
SysTick_SetReload(ud2) 0 0 0.00 0 0.00

Debug Log |Buld Function Profiler | Ereakpoints |ETM Trace

To avoid this discordance, the user should use a pre-filtered trace using the Trace start
and Trace stop breakpoints to limit the amount of trace data.

I‘YI Doc ID 16243 Rev 1 13/16

Conclusion

TNO132

3

14/16

Conclusion

Regarding the SWV feature, clearly the single serial wire port is not able to provide all trace
information, because of the high speed of the STM32. Nevertheless, a statistical sampling
indication of performance analysis is possible with both EWARM and ARM-MDK toolchains
which is sufficiently adequate for profile analysis for the SWV feature.

Concerning the ETM feature, the buffer size of the trace capture device limits the instruction
trace capability, nonetheless the STM32 ETM is able to provide an efficient debug and
instruction trace especially when it is combined with the ITM trace to obtain a complete
debug solution.

Doc ID 16243 Rev 1 KYI

TNO132

Revision history

4

Revision history

Table 1. Document revision history
Date Revision Changes
27-Jan-2010 1 Initial release.

Doc ID 16243 Rev 1

15/16

TNO0132

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2010 STMicroelectronics - All rights reserved
STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

16/16 Doc ID 16243 Rev 1 [‘II

	1 SWV feature capabilities
	1.1 Introduction
	1.2 Context
	1.3 Program counter (PC) sample
	1.3.1 ARM-MDK / ULINK2 toolchain example
	Figure 1. ARM-MDK PC samples: Hardware buffer overrun
	Figure 2. ARM-MDK PC samples: Overflow

	1.3.2 EWARM / J-Link toolchain example
	Figure 3. EWARM PC Samples: Overflow

	1.4 Read and write data frames
	1.4.1 ARM-MDK / ULINK2 toolchain example
	Figure 4. ARM-MDK data read access: Hardware buffer overrun
	Figure 5. ARM-MDK data read access: Overflow

	1.4.2 EWARM / J-Link toolchain example
	Figure 6. EWARM data read access : Overflow

	1.5 Printf
	1.5.1 ARM-MDK / ULINK2 toolchain example
	Figure 7. ARM-MDK Printf: Hardware buffer overrun

	1.5.2 EWARM / J-Link toolchain example
	Figure 8. EWARM Printf: Data display

	1.6 Exception trace dialog
	1.6.1 ARM-MDK / ULINK2 toolchain example
	Figure 9. ARM-MDK Exception: Hardware buffer overrun
	Figure 10. ARM-MDK Exception: Overflow

	1.6.2 EWARM / J-Link toolchain example
	Figure 11. EWARM Exception: Overflow

	2 ETM feature capabilities
	2.1 Introduction
	2.2 Context
	2.3 Instruction timing
	2.3.1 EWARM / J-Trace toolchain example
	2.3.2 ARM-MDK / JTAGjet-Trace toolchain example
	Figure 12. ETM Trace window in ARM-MDK: Timestamps

	2.4 Data tracing
	2.4.1 EWARM / J-Trace toolchain example
	2.4.2 ARM-MDK / JTAGjet-Trace toolchain example
	Figure 13. ETM Trace window in ARM-MDK

	2.5 Function profiler
	2.5.1 ARM-MDK / JTAGjet-Trace toolchain example
	2.5.2 EWARM / J-Trace toolchain example
	Figure 14. Function profiler window in EWARM
	Figure 15. Function profiler window in EWARM

	3 Conclusion
	4 Revision history
	Table 1. Document revision history

