
July 2009 Doc ID 15468 Rev 1 1/18

AN2945
Application note

STM8S and STM32™ MCUs: a consistent 8/32-bit product line
for painless migration

Introduction
Following the market launch of the award winning STM32™ microcontroller,
STMicroelectronics completes the renewal of its microcontroller product line with the
announcement of the STM8S family. Significant effort has been made to rationalize the
MCU portfolio, in particular by capitalizing on common peripherals and software tools with
the aim to easing product migration.

The cost, in terms of both time and money, of maintaining a development team to design in
a new MCU family is a major criterion when selecting a microcontroller supplier. It is
therefore an advantage to make this kind of non-recurring investment if it applies to a broad
range of MCUs. With an MCU product line ranging from 20 to 144 pins, and memory sizes
from 2 to 512 Kbytes, the 8-bit STM8S and 32-bit STM32 families bring a lot of flexibility
when building a product portfolio. Should an 8-bit application run out of MIPS, there is an
upgrade path to the STM32 family. Conversely, if you wish to cut costs on a 32-bit platform,
it is relatively simple to switch to the STM8 family.

This document presents the similarities and common features of the STM8S and STM32
product lines, with a view of helping migration from one family to the other.

www.st.com

http://www.st.com

Contents AN2945

2/18 Doc ID 15468

Contents

1 Core . 5

2 Peripherals . 6

3 System features . 10

3.1 Reset . 10

3.2 Clock . 11

3.3 Memory . 11

3.4 Safety . 12

3.5 Low power . 13

4 Software library . 14

5 Conclusion . 16

6 Revision history . 17

AN2945 List of tables

Doc ID 15468 3/18

List of tables

Table 1. STM8 and STM32: core comparison . 5
Table 2. STM32 SPI register map and reset values . 8
Table 3. STM8 SPI register map and reset values . 8
Table 4. Peripherals shared between STM8 and STM32 devices . 9
Table 5. STM8S/STM32 clock source characteristics (indicative data) . 11
Table 6. Document revision history . 17

List of figures AN2945

4/18 Doc ID 15468

List of figures

Figure 1. Digital peripheral’s internal structure . 6
Figure 2. SPI block diagrams. 7
Figure 3. STM8S and STM32 reset circuitries . 10
Figure 4. STM8S code example . 15
Figure 5. STM32 code example. 15

AN2945 Core

Doc ID 15468 5/18

1 Core

The STM8™ CPU is a proprietary architecture that maintains the legacy of the previous ST7
core while being a breakthrough in terms of 8-bit CPU efficiency and code density. The
STM32 is built around the industry standard ARM® Cortex™-M3 32-bit core and benefits
from the complete ecosystem of development tools and software solutions associated with
ARM processors. Although they may be perceived as radically different, these two
processors indeed share many architectural similarities summarized in Table 1.

Both are based on the Harvard architecture. They have 3-stage pipelined execution that
minimizes the execution time, a clock speed up to 24 MHz for the STM8S and up to 72 MHz
for the STM32 family.

They are devised to be highly energy efficient, with several low power modes, and they
benefit from memory interfaces wider than the average instruction length (32- and 64-bit
wide busses, respectively). This minimizes the number of accesses to the memory bus and
thus the consumption related to address bus toggling and non-volatile memory read
accesses. Interrupt tail chaining and the Halt/Sleep on exit modes also help avoiding
unnecessary stack accesses.

Finally, in terms of code density, both have excellent results, owing to the 8-bit CISC
instruction set for the STM8S family and, to the 16-bit Thumb-2 mode introduced by the
Cortex core for the STM32 family.

This short comparison demonstrates that both processors are state-of-the-art in terms of
micro-architectural features. The STM8 is at the level of legacy of 16-bit processors, and the
Cortex-M3 meets the requirements of applications currently using 32-bit down to mid/high-
end 16-bit MCUs. The combination of the STM8 and STM32 therefore establishes a
performance continuum, which is now also supported at tool levels by a third party offering a
unified development platform for both product lines.

Table 1. STM8 and STM32: core comparison

STM8 Cortex-M3

Data path 8-bit 32-bit

Drhystone MIPS (0WS) 0.29 DMIPS 1.22 DMIPS

Architecture Harvard Harvard

Pipeline Yes, three-stage Yes, three-stage

Instruction set CISC RISC

Program bus data width 32-bit 32-bit

Prefetch buffer Yes, 2 × 32-bit, internal Yes, 2 × 64-bit, in memory interface

Average instruction size 2 bytes 2 bytes

Interrupt type

Latency

Vectorized

9 cycles, tail chaining supported

Vectorized

12 cycles, tail chaining supported

Low power modes
Slow, Wait for Event or interrupts,
Halt, Halt on exit

Slow, Sleep (Wait for event or
interrupt), Sleep on exit, Deep sleep

Debug interface 1-wire (SWIM) 2-wires or legacy JTAG

Peripherals AN2945

6/18 Doc ID 15468

2 Peripherals

The MCU peripherals (also called IPs) are another example of the ST MCU consistency
across the 8- and 32-bit product lines: most of the basic IPs have been defined and
structured to be portable from one product family to the other. This was done by adapting
simple, yet effective, 8-bit peripherals to the 32-bit world. It brings the benefits of cost- and
power-effective, easy to understand resources, which are complemented at system level by
wider busses and a DMA controller when higher performance is needed. Once the working
principle of a peripheral is understood, it is applicable to both the STM8S and STM32
families, thus speeding up transition between devices.

Figure 1 shows a simplified representation of a digital peripheral.

Figure 1. Digital peripheral’s internal structure

The peripheral can be partitioned into two main blocks. First, a kernel that contains the state
machines, counters and any kind of combinatorial or sequential logic necessary to perform
tasks that do not need the processor, such as low-communication layers, analog front-end
management or timing-driven functions. If necessary, the kernel is connected to the external
world via MCU ports. The external connection may consist of a few I/Os or complex busses.
Second, the peripheral is initialized and controlled by the application through registers
connected to an internal bus shared with the other MCU resources. In 8-bit microcontrollers,
the processor directly writes to and reads from registers, whereas in 32-bit products, register
read and write operations usually go through a bridge. The main difference between the two
families, however, lies in the internal bus specification the peripheral has to comply with.
This explains why STM8S and STM32 devices are able to share peripherals: these are
based on the same kernel, and are only tailored to the two different bus interfaces. ARM
processors and peripherals comply with the AMBA bus specification, with a 32-bit databus,

A
dr

es
s

an
d

da
ta

 b
us

 (
A

M
B

A
 /

S
T

M
8)

Bus interface
& registers IP kernel I/Os

ai15955

AN2945 Peripherals

Doc ID 15468 7/18

whereas STM8S devices use a simpler, yet efficient, 8-bit bus standard. From the functional
point of view, they only differs by:

● the register size: 8 vs. 16 or 32-bit

● the maximum clock frequency that directly depends on the CPU operating speed

● the DMA that offloads the CPU from simple data management and increases the
maximum data throughput

● few product-specific functions, such as I/O port management

Let us consider the STM8S and STM32 SPI block diagrams shown in Figure 2. At first
glance, they look identical apart from a few differences in bits highlighted in red in Figure 2,
for instance, at the level of the DMA.

Figure 2. SPI block diagrams

Now considering the register maps shown in Table 2 and Table 3, they are clearly based on
the same design: apart from a few differentiating bits and the register sizes, registers and
bits have similar names and locations in registers.

MOSI

MISO

Baud rate
generator

SCK

Master control logic

Communication
control

SPE BR2 BR1 BR0 MSTR CPOL CPHA

BR[2:0]

RXNE

LSB

BIDI
MODE

BIDI
OE SSM SSI

BSY OVR
MOD RXNETXE

ERRTXE

0 0

DFF

0 SSOE

CRC
EN

0

RX
ONLY

CRC
Next

CRC
ERR

0

1

NSS

IE

F

FIRST

SPI_CR1

SPI_CR2

SPI_SR

TXDM
AEN

RXDM
AENIEIE

Address and data bus

Read

Rx buffer

Shift register
LSB first

Tx buffer

Write

STM32 STM8

MOSI

MISO

Baud rate
generator

SCK

Master control
logic

Communication
control

SPE BR2 BR1 BR0 MSTR CPOL CPHA

BR[2:0]

RXNE

LSB

BIDI
MODE

BIDI
OE SSM SSI

BSY OVR
MOD RXNETXE

ERRTXE

WKUP 0

0

0 0

CRC
EN

WKIE

RX
ONLY

CRC
Next

CRC
ERR

0

1

NSS

IE

F

FIRST

0 0IEIE

Address and data bus

Read

Rx buffer

Shift register
LSB first

Tx buffer

Write

ai15956

fMASTER

Peripherals AN2945

8/18 Doc ID 15468

Table 2. STM32 SPI register map and reset values
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00
SPI_CR1

Reserved

B
ID

IM
O

D
E

B
ID

IO
E

C
R

C
E

N

C
R

C
N

E
X

T

D
F

F

R
X

O
N

LY

S
S

M

S
S

I

LS
B

F
IR

S
T

S
P

E BR [2:0]

M
S

T
R

C
P

O
L

C
P

H
A

Reset Value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x04
SPI_CR2

Reserved

T
X

E
IE

R
X

N
E

IE

E
R

R
IE

R
es

er
ve

d

S
S

O
E

T
X

D
M

A
E

N

R
X

D
M

A
E

N

Reset Value 0 0 0 0 0 0

0x08
SPI_SR

Reserved B
S

Y

O
V

R

M
O

D
F

C
R

C
E

R
R

U
D

R

C
H

S
ID

E

T
X

E

R
X

N
E

Reset Value 0 0 0 0 0 0 1 0

0x0C
SPI_DR

Reserved
DR[15:0]

Reset Value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x10
SPI_CRCPR

Reserved
CRCPOLY[15:0]

Reset Value 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

0x14
SPI_RXCRCR

Reserved
RxCRC[15:0]

Reset Value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x18
SPI_TXCRCR

Reserved
TxCRC[15:0]

Reset Value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x1C
SPI_I2SCFGR

Reserved

I2
S

M
O

D

I2
S

E

I2
S

C
F

G

P
C

M
S

Y
N

C

R
es

er
ve

d

I2
S

S
T

D

C
K

P
O

L

D
AT

LE
N

C
H

LE
N

Reset Value 0 0 0 0 0 0 0 0 0 0 0

0x20
SPI_I2SPR

Reserved

M
C

K
O

E

O
D

D I2SDIV

Reset Value 0 0 0 0 0 0 0 0 1 0

Table 3. STM8 SPI register map and reset values

Address
offset

Register
name

7 6 5 4 3 2 1 0

0x00
SPI_CR1

Reset value
LSBFirst

0
SPE

0
BR2

0
BR1

0
BR1

0
MSTR

0
CPOL

0
CPHA

0

0x01
SPI_CR2

Reset value
BDM

0
BDOE

0
CRCEN

0
CRCNEXT

0
Reserved

0
RXONLY

0
SSM

0
SSI
0

0x02
SPI_ICR

Reset value
TXIE

0
RXIE

0
ERRIE

0
WKIE

0
Reserved

0
Reserved

0
Reserved

0
Reserved

0

0x03
SPI_SR

Reset value
BSY

0
OVR

0
MODF

0
CRCERR

0
WKUP

0
Reserved

0
TXE

1
RXNE

0

0x04
SPI_DR

Reset value
MSB

0
-
0

-
0

-
0

-
0

-
0

-
0

LSB
0

0x05
SPI_CRCPR
Reset value

MSB
0

-
0

-
0

-
0

-
0

-
1

-
1

LSB
1

0x06
SPI_RXCRCR

Reset value
MSB

0
-
0

-
0

-
0

-
0

-
0

-
0

LSB
0

0x07
SPI_TXCRCR
Reset value

MSB
0

-
0

-
0

-
0

-
0

-
0

-
0

LSB
0

AN2945 Peripherals

Doc ID 15468 9/18

Table 4 lists the common peripherals, highlighting the coherency between products at
register, bit and feature level.

Although the timers seem different with many distinct configurations, their architecture
across and within the product families is the same. There are only variations of a single
timer architecture. From the superset, sub-blocks can optionally be stripped to decrease the
number of capture/compare channels or remove options necessary only for a few specific
applications such as motor control.

Table 4. Peripherals shared between STM8 and STM32 devices

Peripheral names

STM32 STM8

Independent watchdog (IWDG)

Window watchdog (WWDG)

Serial peripheral interface (SPI)

Inter-integrated circuit (I2C) interface

Universal synchronous/asynchronous receiver/transmitter (USART)

Advanced-control timers 16-bit advanced-control timer

General-purpose timer 16-bit general-purpose timers

Basic timer 8-bit basic timer

System features AN2945

10/18 Doc ID 15468

3 System features

Today’s MCUs are complex SoCs (systems on chip) that not only include a lot of peripherals,
but also advanced-system features aiming at reducing the bill of material or enhancing the
products’ safety and robustness. This is true for both 8- and 32-bit platforms.

3.1 Reset
As shown in Figure 3, the STM8S and STM32 devices have the same reset circuitry, with
only slight differences.

The NRST pin is both an input and an open-drain output with a built-in pull-up resistor. For
EMS (electromagnetic sensitivity) robustness purposes, a filter is inserted to avoid glitch
propagation into the digital circuitry. There are three advantages with having a bidirectional
reset:

● for multi-MCU systems, bidirectional reset ensures than all subprocessors are correctly
synchronized at startup or in case of a warm reset

● the voltage supervisors (power-on reset and brownout reset) embedded in the MCU
can also be used at system level for other ICs

● it is of a great help during debugging when spurious internal resets are generated

Figure 3. STM8S and STM32 reset circuitries

NRST

RPU

VDD/VDDA

WWDG reset
IWDG reset

Pulse
generator

Power reset

External
Reset

(min 20 µs)

System resetFilter

Software reset
Low-power management reset

NRST

RPU

VDD_IO

SWIM reset

External
reset

(min 20 µs)

System reset

Illegal opcode reset
EMS reset

IWDG/WWDG/software reset
POR/BOR reset

Filter
(typ 45kΩ)

STM8S

STM32

Pulse
generator

ai15959

AN2945 System features

Doc ID 15468 11/18

3.2 Clock
From the clock system standpoint, the two products have three main clock sources in
common, that share similar electrical characteristics. See Table 5 for details.

The oscillator handles both the crystal and resonators, and is called the HSE (for high-
speed external). It can also be bypassed to feed the MCU with an external clock. This is
used for applications that have stringent requirements in terms of accuracy and stability, for
communication purposes for instance.

An application can run at a high frequency without an external crystal by using the HSI clock
(for high-speed internal). This source has a consumption 10 times lower than the HSE and a
very low percentage of accuracy error. It can also be used as a PLL input on the STM32 to
increase the internal frequency to up to 64 MHz.

Finally, the low-speed internal clock (LSI) is an ultralow internal power source (a few µA),
that can be permanently enabled to clock an auto-wakeup peripheral during the Halt or Stop
mode. It can also clock a secondary on-board watchdog (refer to Section 3.4: Safety for
further details), and be used as the CPU clock on the STM8 products. It is not accurate
(error of a few tens of percents), but it can be measured periodically using the precise HSI
clock to compensate for chip manufacturing variations or the drift due to temperature for
instance.

3.3 Memory
Both product lines are based on non-volatile memories and have an option byte loader. This
mechanism replaces the legacy fuses for MCU power-up configuration: the user can select
several options at programming time, which are written alongside the program binary image.

Several features are available on all news microcontrollers:

● Reset in Halt, Stop or Standby mode: this is to avoid a deadlock situation in case the
MCU enters a low power mode by accident, for applications not designed to handle
such a configuration

● Hardware/Software watchdog, to have the possibility of starting the watchdog by
hardware, right after the reset sequence

● Memory readout protection, to prevent any piracy on the program content

● Memory write protection, to protect part of the memory, if it contains a critical code.
Usually, this applies to the boot code or an IAP (in application programming) driver

Table 5. STM8S/STM32 clock source characteristics (indicative data(1))

1. Refer to product datasheet for detailed electrical characteristics.

System clock source
Frequency

Accuracy error Consumption
STM8S STM32

High-speed external (HSE) 1-24 MHz 4-16 MHz
Crystal dependent,
down to a few tens of
ppm

1 to 2 mA

High-speed internal (HSI) 16 MHz 8 MHz 1% typical 100 to 250 µA

Low-speed internal 110-146 kHz 30-60 kHz 20 to 50% 1 to 5 µA

System features AN2945

12/18 Doc ID 15468

These options allow automatically enabled safety and robustness features, so that the
application can recover even if a disturbance or an attack occurs before the very first
instruction is fetched by the CPU.

The STM8S and STM32 devices have an embedded boot loader, making it possible
reprogram the internal Flash memory with an on-board serial interface (the UART for
instance). Any PC with a serial COM interface can then be used as a programming tool to
program or update the Flash and data EEPROM memory content. ST provides a software
utility to perform all operations supported by the boot loader.

3.4 Safety
The automotive industry first pushed for increasing the reliability of MCU-based electronic
controls. This has been followed by similar requests from the industrial segments, and
household appliances now have to comply with a specific standard, IEC60335-1. Both the
STM32 and STM8S devices are Class B compliant according to this standard. Compliance
is obtained by using dedicated self-test libraries certified by an independent test institute,
and also with the help of some specific hardware circuitry. Both the software and hardware
contribute to significantly reduce the development and qualification time of applications with
stringent functional safety requirements.

● Watchdogs

The MCUs embed two watchdogs:

– The Window Watchdog is intended to monitor the main loop and check that loop
time is within a given time frame. It runs on the system clock.

– In parallel, an independent watchdog can be activated to increase the system’s
robustness This watchdog will indeed continue to operate even in the case of a
main clock failure (for instance due to a broken crystal).

● Clock monitoring

The standard also requires the detection of crystal failure or oscillations at harmonics/
subharmonics. This is achieved using the clock system described in Section 3.2: Clock,
to periodically measure the external crystal or resonator frequency with the internal
clock source. Finally, a clock security system (CSS) also monitors the HSE source and
automatically switches back the system clock to the internal HSI clock in case of a
failure.

AN2945 System features

Doc ID 15468 13/18

3.5 Low power
On top of the core’s intrinsic low power modes, both the STM8S and STM32 devices are
able to reduce the overall consumption at system-on-chip level.

The power consumption in the Run and Wait modes can be reduced by one of the following
means:

● Slowing down the system clocks: the consumption can thus be adjusted according to
the performance required by the application. This is done using the prescalers included
in the clock controller.

● Gating the clocks of the peripherals when they are not used to minimize the dynamic
consumption related to the clock tree switching activity.

The two products embed regulators to supply the internal logic at 1.8 V. These regulators
have a significant operating current in Run mode (a few tens of µA) where they are able to
deliver currents in the mA or tens of mA range. In order to further reduce consumption, it is
possible to configure the regulator in low power mode, and minimize its quiescent
consumption, when the current necessary to supply the logic is in the µA range, typically
during the Halt or Stop mode. This mode offers the lowest consumption, with a wakeup time
slightly longer than the configuration using the regulator in Run mode.

Software library AN2945

14/18 Doc ID 15468

4 Software library

Peripheral compatibility throughout ST’s STM8 and STM32 MCU families promotes platform
design and helps significantly switch from one product line to the other. When it comes to
development time, however, software support is essential. Extensive software libraries are
available for both the STM8S and STM32 devices, providing the user with a hardware
abstraction layer (HAL) for all MCU resources. Moreover, there is not a single control/status
bit that is not covered by a C function or an API.

The software library covers three abstraction levels, and it includes:

1. a complete register address map with all bits, bit fields and registers declared in C. By
providing this map, the software library makes the designers’ task much lighter and,
even more importantly so, it gives all the benefits of a bug-free reference mapping file,
thus speeding up the early project phase.

2. a collection of routines and data structures in API form, that covers all peripheral
functions. This collection can directly be used as a reference framework, since it also
includes macros for supporting core-related intrinsic features and common constant
and data type definition. Moreover, it is compiler agnostic and can therefore be used
with any existing or future toolchain. It was developed using the MISRA C automotive
standard.

3. a set of examples covering all available IPs (85 examples so far for the STM32 family,
57 for the STM8S family), with template projects for the most common development
toolchains. With the appropriate hardware evaluation board, only a few hours are
needed to get started with a brand new microcontroller.

It is then up to you to choose how to use the library. You can either pick up the files useful for
the design, use examples to get trained or quickly evaluate the product. You can also use
the API to save development time.

Let us now have a look at the few key files and concepts. Two separate libraries support the
STM8S and STM32F devices. In the file names below, you simply need to replace the
“stmxxx_” prefix by “stm32f10x” or “stm8s” depending on the chosen product.

● stmxxx_.h

This file is the only header file that must be included in the C source code, usually in
main.c. This file contains:

– data structures and address mapping for all peripherals

– macros to access peripheral register hardware (for bit manipulation for instance),
plus STM8S core intrinsics

– a configuration section used to select the device implemented in the target
application. You also have the choice to use or not the peripheral drivers in the
application code (that is code based on direct access to registers rather than
through API drivers)

● stmxxx_conf.h

This is the peripheral driver configuration file, where you specify the peripherals you
wants to use in your application, plus a few application-specific parameters such as the
crystal frequency.

● stmxxx_it.c

This file contains the template IRQ handler to be filled, but this is already the first
development step!

AN2945 Software library

Doc ID 15468 15/18

Once you have understood the above operating principle and file organization, for simple
applications, you could virtually switch from one product to the other without referring to the
reference manual.
Let us take a practical example: an SPI peripheral configured in master mode, used to read
from/write to an external EEPROM.

Figure 4 and Figure 5 below show the initialization code (using the software library) for an
STM8S and an STM32 product, respectively.

Figure 4. STM8S code example

Figure 5. STM32 code example

All parameters are identical, and the procedure is similar with two function calls for both
configuration and startup. The main difference lies in the way the parameters are passed
into the function. STM32 devices use a structure passed by address whereas, for STM8S
devices, parameters are passed directly to minimize the amount of RAM needed during the
initialization phase (this is necessary with devices with down to 1 Kbyte of RAM).
Another difference is the possibility, when using STM32 devices, of specifying the data size
(8- or 16-bit) for the SPI. In the above example (Figure 5), the data size is explicitly defined,
however, the library is done so that it can be omitted: if this field is not initialized in the
structure, the 8-bit data size is used by default to maintain compatibility with STM8S
devices.

/* --------------- Initialize SPI in Master mode -------------- */
SPI_Init(SPI_FIRSTBIT_MSB,
SPI_BAUDRATEPRESCALER_4,
SPI_MODE_MASTER,
SPI_CLOCKPOLARITY_LOW,
SPI_CLOCKPHASE_2EDGE,
SPI_DATADIRECTION_1LINE_TX,
SPI_NSS_SOFT,
0x07); /* CRC Polynomial */
/* ------------------------- Enable SPI ----------------------- */
SPI_Cmd(ENABLE);

/* ---------------------- SPI1 Master ------------------------- */
SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB;
SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_4;
SPI_InitStructure.SPI_Mode = SPI_Mode_Master;
SPI_InitStructure.SPI_CPOL = SPI_CPOL_Low;
SPI_InitStructure.SPI_CPHA = SPI_CPHA_2Edge;
SPI_InitStructure.SPI_Direction = SPI_Direction_1Line_Tx;
SPI_InitStructure.SPI_NSS = SPI_NSS_Soft;
SPI_InitStructure.SPI_CRCPolynomial = 7;
SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b;
SPI_Init(SPI1, &SPI_InitStructure);
/* ----------------------- Enable SPI1 ------------------------ */
SPI_Cmd(SPI1, ENABLE);

/* Private variables --------------------------------------- */
SPI_InitTypeDef SPI_InitStructure;

Conclusion AN2945

16/18 Doc ID 15468

5 Conclusion

This application note discusses the points that ease the transition from the 8-bit STM8S to
the 32-bit STM32 devices, and vice versa. Based on the 8- to 32-bit core performance
continuum, the new STM32 and STM8S MCU families have a lot of common features. At the
peripheral level, they share standard IPs like timers and communication interfaces. At the
system level, they have identical features, reducing the external component count (clock and
reset systems, safety features, etc).

These common features are complemented by a set of software libraries that come as a
major help to get started for new development. The libraries can also serve as foundations
for a unified development platform supporting both 8- and 32-bit MCUs owing to the
abstraction level they both offer.

Finally, the common features of the STM8S and STM32 devices with the benefits of their
software libraries maximize design re-use and decrease time to market, specially if the
application has derivatives with various requirements in terms of processing power,
connectivity or control function complexity.

AN2945 Revision history

Doc ID 15468 17/18

6 Revision history

Table 6. Document revision history

Date Revision Changes

28-Jul-2009 1 Initial release.

AN2945

18/18 Doc ID 15468 Rev 1

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

	1 Core
	Table 1. STM8 and STM32: core comparison

	2 Peripherals
	Figure 1. Digital peripheral’s internal structure
	Figure 2. SPI block diagrams
	Table 2. STM32 SPI register map and reset values
	Table 3. STM8 SPI register map and reset values
	Table 4. Peripherals shared between STM8 and STM32 devices

	3 System features
	3.1 Reset
	Figure 3. STM8S and STM32 reset circuitries

	3.2 Clock
	Table 5. STM8S/STM32 clock source characteristics (indicative data)

	3.3 Memory
	3.4 Safety
	3.5 Low power

	4 Software library
	Figure 4. STM8S code example
	Figure 5. STM32 code example

	5 Conclusion
	6 Revision history
	Table 6. Document revision history

