

April 2009 Doc ID 15349 Rev 2 1/15

AN2931
Application note

Implementing the ADPCM algorithm
in high-density STM32F103xx microcontrollers

Introduction
This application note describes the ADPCM audio firmware codec, and provides a
demonstration firmware showing how to play ADPCM files using the high-density
STM32F103xx I2S feature with an external DAC.

This application note is based on “AN2739: How to use the high-density STM32F103xx
microcontroller to play audio files with an external I2S audio codec”. The features linked to
the SPI, I2S and the external DAC will be skipped here because they are already explained
in AN2739. It is therefore highly recommended to refer to AN2739 to fully understand this
application note.

www.st.com

http://www.st.com

Contents AN2931

2/15 Doc ID 15349 Rev 2

Contents

1 ADPCM algorithm . 5

1.1 General overview . 5

1.2 ADPCM algorithm implementation . 5

1.3 ADPCM algorithm functions . 6

1.3.1 ADPCM_Encode function . 6

1.3.2 ADPCM_Decode function . 6

2 Implementation example . 8

2.1 Description . 8

2.2 ADPCM file generation . 8

2.3 ADPCM file loading . 9

2.4 ADPCM file playing . 11

3 Conclusion . 13

4 Revision history . 14

AN2931 List of tables

Doc ID 15349 Rev 2 3/15

List of tables

Table 1. ADPCM algorithm functions . 6
Table 2. ADPCM_Encode function . 6
Table 3. ADPCM_Decode function . 7
Table 4. Document revision history . 14

List of figures AN2931

4/15 Doc ID 15349 Rev 2

List of figures

Figure 1. ADPCM file generator . 8
Figure 2. DFU File Manager . 10
Figure 3. DFU File Manager source browser . 10
Figure 4. DfuSe software . 11

AN2931 ADPCM algorithm

Doc ID 15349 Rev 2 5/15

1 ADPCM algorithm

1.1 General overview
Adaptive differential pulse-code modulation, or simply ADPCM, is an audio algorithm for
waveform coding, which consists in predicting the current signal value from previous values,
and transmitting only the difference between the real and the predicted value.
In plain pulse-code modulation (PCM), the real or actual signal value is transmitted.

The advantage of ADPCM is that the difference between the predicted signal value and the
actual signal value is usually quite small, which means it can be represented using fewer
bits than the corresponding PCM value.

Depending on the desired quality and compression ratio, the differential signal is quantized
using 4 (2 bit), 8 (3 bit), 16 (4 bit) or 32 (5 bit) levels.

Many implementations of the ADPCM algorithm exist. They differ by the quantization and
the prediction patterns.

In this application note, we provide a 4-bit quantization algorithm, developed by the
Interactive Multimedia Association (IMA), IMA ADPCM.

IMA ADPCM was chosen for several reasons:

● it can operate at different sampling rates between 8 kHz and 44.10 kHz

● it guarantees good quality with low CPU usage and memory size requirements

● it has widespread implementations, for instance in the Windows and MAC operating
systems

The IMA ADPCM algorithm is fully described in a document published by the IMA Digital
Audio Focus and Technical Working Groups: “Recommended Practices for Enhancing
Digital Audio Compatibility in Multimedia Systems” revision 3.

1.2 ADPCM algorithm implementation
The IMA ADPCM algorithm provided in this application note is used to encode audio files
that have the following specification:

● Audio format: PCM

● Audio sample size: 16 bits

● Channels: 1 (mono)

● Audio sample rate: from 8 kHz to 44.1 kHz

Each 16-bit PCM sample is encoded into a 4-bit ADPCM sample, which gives a
compression rate equal to ¼.

The implementation of the IMA ADPCM algorithm consists in two functions, one that codes
and the other that decodes the audio samples.

The ADPCM firmware is composed of two files:

a) adpcm.c: it contains the source code of the two ADPCM functions that perform the
coding and decoding.

b) adpcm.h: it is the header file of adpmc.c. It should be included in the files where
the ADPCM functions are called.

ADPCM algorithm AN2931

6/15 Doc ID 15349 Rev 2

1.3 ADPCM algorithm functions
Table 1 describes the ADPCM functions.

1.3.1 ADPCM_Encode function

Table 2 describes the ADPCM_Encode function.

Table 2. ADPCM_Encode function

The ADPCM_Encode function returns a byte containing the 4-bit ADPCM sample. The
software has to store every two ADPCM samples into one byte to save memory space.

Example:

//Input: pcm_sample1 and pcm_sample2; two 16-bit PCM samples.
//Output: adpcm_byte; two 4-bit ADPCM samples stored into one byte.

uint8_t code;
/* Encode the first 16-bit sample */
code = ADPCM_Encode(pcm_sample1);
/* Store the first 4-bit sample */
adpcm_byte = code;
/* Encode the second 16-bit sample */
code = ADPCM_Encode(pcm_sample2);
/* Store the second 4-bit sample */
adpcm_byte |= (code << 4);/* The adpcm_byte contains two 4-bit ADPCM
samples */

1.3.2 ADPCM_Decode function

Table 3 describes the ADPCM_Decode function.

Table 1. ADPCM algorithm functions

Function name Description

ADPCM_Encode Encodes a 16-bit PCM sample into a 4-bit ADPCM sample.

ADPCM_Decode Decodes a 4-bit ADPCM sample into a 16-bit PCM sample.

Function name ADPCM_Encode

Prototype uint8_t ADPCM_Encode(int16_t sample);

Behavior description Encodes a 16-bit PCM sample into 4-bit ADPCM sample

Input parameter Sample: a 16-bit PCM sample

Output parameter None

Return parameter The encoded ADPCM 4-bit sample loaded into a byte

AN2931 ADPCM algorithm

Doc ID 15349 Rev 2 7/15

Table 3. ADPCM_Decode function

The input of the ADPCM_Decode function is a byte that contains the 4-bit ADPCM sample.
The software has to extract the 4-bit ADPCM data and store them into a byte before calling
the ADPCM_Decode function.

Example:

//Input: adpcm_byte; two 4-bit ADPCM samples stored into one byte.
//Output: pcm_sample1 and pcm_sample2; two 16-bit PCM samples.

uint8_t code;
/* Extract the first ADPCM 4-bit sample */
code = (adpcm_byte & 0x0F);
/* Decode the first ADPCM sample */
pcm_sample1 = ADPCM_Decode(code);
/* Extract the second ADPCM sample */
code = (adpcm_byte >> 4);
/* Decode the second ADPCM sample */
pcm_sample2 = ADPCM_Decode(code);

Function name ADPCM_Decode

Prototype int16_t ADPCM_Decode(uint8_t code);

Behavior description Decodes a 4-bit ADPCM sample into a 16-bit PCM sample

Input parameter
Code: an 8-bit data item whose 4 LSBs contain the encoded ADPCM
sample

Output parameter None

Return parameter A 16-bit PCM sample

Implementation example AN2931

8/15 Doc ID 15349 Rev 2

2 Implementation example

2.1 Description
You can run the provided example on the STM3210E-EVAL board. It is a typical audio
application that consists in:

● first encoding a PCM file into the ADPCM format using a PC software (This software is
called muse.exe, and was developed by ST. It implements the same ADPCM algorithm
encoder as the one that runs on STM32F103xx performance line devices. muse.exe is
included in the zipped software package that comes with this application note: please
refer to Section 2.2 for how to use this tool.)

● then loading the encoded file into a Flash memory

● and finally decoding the file and playing it using the high-density STM32F103xx
microcontroller.

On the STM3210E-EVAL board, the 128 Mbit NOR Flash memory stores the ADPCM file
and the firmware decoder that runs on STM32F103xx devices. It then decodes the stream
and, with the I2S external DAC, plays back the audio samples.

The hardware environment is based on the application note “AN2739: How to use the high-
density STM32F103xx microcontroller to play audio files with an external I2S audio codec”,
so please refer to that application note for more information.

To run this demo, three steps are required:

1. generating the ADPCM file

2. loading the ADPCM file into the NOR Flash memory

3. playing the ADPCM file

2.2 ADPCM file generation
The application note package contains a PC software called Muse to encode PCM files into
the ADPCM format.

Figure 1. ADPCM file generator

AN2931 Implementation example

Doc ID 15349 Rev 2 9/15

If you run the Muse.exe program and press the Source File Browse button, the File
Selection dialog appears, prompting you to select a WAV source file. As mentioned before,
the WAV file should meet the following requirements:

● Audio format: PCM

● Audio sample size: 16 bits

● Channels: 1 (mono)

● Audio sample rate: from 8 kHz to 44.1 kHz

If your WAV file does not satisfy these conditions, you must previously convert it using an
audio converter tool, like sndrec32.exe, which is the Microsoft® default program for audio
records.

Once you have selected the file to be converted, the New File Selection dialog appears,
prompting you to select the save location of your ADPCM converted file.

You can retrieve the PCM format of the encoded audio file by ticking the Make a recovered
PCM file check box. In this case, the generated ADPCM file is decoded and formatted into a
WAV file. This WAV file is called Recover.wav and it is generated in the same directory as
your WAV source file. In this way you can listen to both the original WAV file and the
recovered one to compare the sound quality.

2.3 ADPCM file loading
Use the DfuSe software to load the ADPCM file into the NOR Flash memory. To do so, two
steps are necessary:

1. generating the .dfu image

2. loading the .dfu image into the NOR Flash memory

Generating the .dfu image

To generate the .dfu image, you have to use the DFU File Manager software provided within
the DfuSe package. For that, open the DFU File Manager program and choose the DFU file
generation option. The window shown in Figure 2 opens. You have to select 2 for the target
ID, meaning that the file is loaded into the NOR Flash memory. Then, click on the Multi
BIN... button to open the source browser and select your ADPCM file.

Implementation example AN2931

10/15 Doc ID 15349 Rev 2

Figure 2. DFU File Manager

The NOR Flash memory is mapped on the FSMC interface from address 0x6400 0000,
which is the start address of the ADPCM file storage area. So, you have to set the address
of the .dfu image to 0x6400 0000 (see Figure 3). Finally, click on Add to list and then
Generate to finish the DFU file generation.

Figure 3. DFU File Manager source browser

Loading the DFU image

To load the DFU image into the NOR Flash memory you have to:

1. connect the STM3210E-EVAL board to a PC using a USB cable

2. load and run the device firmware upgrade (DFU) demonstration on the STM3210E-
EVAL board. You can find this firmware in the STM3210xxx USB development kit

3. start the DfuSe software on the PC (see Figure 4)

AN2931 Implementation example

Doc ID 15349 Rev 2 11/15

Figure 4. DfuSe software

Select the NOR Flash memory as target, then click on the Choose button located in the
Upgrade or Verify Action area to select your ADPCM DFU image. Finally, click on
Upgrade to perform the download.

2.4 ADPCM file playing
At this point, you have succeeded in loading the ADPCM file into the NOR Flash memory. It
is now time to start the playback demo. Go to the application note package and open the
ADPCM_AN folder. Open the folder project, select the suitable project workspace and open
it in your toolchain. Build all the source files, load the project image and then run the
program.

The LCD on the STM3210E-EVAL board will display the audio commands while the joystick
and the key buttons will be used to control the demo. The allowed audio commands are:
play, pause, stop, forward, rewind and volume setting.

You can select the audio output interface, which can be the speaker provided on the
STM3210E-EVAL board, or headphones. Better audio quality is achieved with headphones.
You can connect them to the STM3210E-EVAL board via the audio jack.

Implementation example AN2931

12/15 Doc ID 15349 Rev 2

Note that to rewind and forward through the audio file, you have to use the joystick buttons
as follows:

● push the joystick to the right to forward

● push the joystick to the left to rewind

AN2931 Conclusion

Doc ID 15349 Rev 2 13/15

3 Conclusion

This application note describes how to implement the IMA ADPCM firmware audio codec
dedicated to STM32F103xx devices. It also provides an example of use that consists in
decoding an ADPCM-encoded audio stream stored in a Flash memory, and playing back the
decoded samples.

The high-density STM32F103xx was used in this application note because it features an I2S
interface that allows communication with the external DAC available on the STM3210E-
EVAL evaluation board.
It is however possible to run this ADPCM firmware codec and play audio files with other
STM32F10xxx devices that do not feature an I2S peripheral, by using the PWM output.
In this case, you simply need to update the provided decoding example for the STM3210B-
EVAL evaluation board, and use the PWM output for audio playback.

Revision history AN2931

14/15 Doc ID 15349 Rev 2

4 Revision history

Table 4. Document revision history

Date Revision Changes

04-Mar-2009 1 Initial release.

30-Apr-2009 2
In code, u8 and s16 updated to uint8_t and int16_t,
respectively.

AN2931

Doc ID 15349 Rev 2 15/15

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

	1 ADPCM algorithm
	1.1 General overview
	1.2 ADPCM algorithm implementation
	1.3 ADPCM algorithm functions
	Table 1. ADPCM algorithm functions
	1.3.1 ADPCM_Encode function
	Table 2. ADPCM_Encode function

	1.3.2 ADPCM_Decode function
	Table 3. ADPCM_Decode function

	2 Implementation example
	2.1 Description
	2.2 ADPCM file generation
	Figure 1. ADPCM file generator

	2.3 ADPCM file loading
	Figure 2. DFU File Manager
	Figure 3. DFU File Manager source browser
	Figure 4. DfuSe software

	2.4 ADPCM file playing

	3 Conclusion
	4 Revision history
	Table 4. Document revision history

