
May 2008 Rev 1 1/26

AN2739
Application note

How to use the high-density STM32F103xx microcontroller
 to play audio files with an external I²S audio codec

Introduction
This application note describes how to use the high-density STM32F103xx I2S feature to
play audio files using an external codec.

The I2S protocol is widely used to transfer audio data from a microcontroller/DSP to an
audio codec in order to play melodies (stored in a memory) or, to capture analog sound
(from a microphone).

The high-density STM32F103xx allows I2S audio communications using the SPI peripheral,
and implements specific functionalities for this communications mode.

The first, preliminary section of this application note may be skipped by advanced users.

Note: Throughout this document, and unless otherwise specified, the term of I2S will be used to
refer to the I2S feature of the SPI peripheral that is implemented in high-density
STM32F103xx microcontrollers.

www.st.com

http://www.st.com

Contents AN2739

2/26

Contents

1 I2S general description . 5

1.1 I2S protocol . 5

1.2 STM32F103xx I2S feature presentation . 6

2 Implementation example . 8

2.1 General overview . 8

2.2 Hardware description . 8

2.2.1 Audio codec . 9

2.2.2 STM32F103xx and board configuration . 10

2.3 Firmware description . 11

2.3.1 I2S_CODEC driver firmware description . 11

2.3.2 Demo firmware description . 18

2.3.3 Timing considerations . 22

2.4 General, allowed parameters . 23

3 Conclusion . 24

4 Revision history . 25

AN2739 List of tables

 3/26

List of tables

Table 1. Driver library description . 11
Table 2. I2S_CODEC driver high-level functions. 11
Table 3. I2S_CODEC_Init function . 12
Table 4. Configuration parameters list . 13
Table 5. I2S_CODEC_ReplayConfig function. 13
Table 6. I2S_CODEC_Play function. 14
Table 7. I2S_CODEC_ControlVolume function . 14
Table 8. I2S_CODEC medium-level driver functions. 15
Table 9. I2S_CODEC low-level driver functions . 16
Table 10. Joystick_Config function . 18
Table 11. Description of the Joystick functionalities . 18
Table 12. LCD_Update function. 19
Table 13. Document revision history . 25

List of figures AN2739

4/26

List of figures

Figure 1. I2S Phillips protocol waveforms 16/32-bit . 5
Figure 2. I2S protocol signal description and configuration . 6
Figure 3. Typical implementation design description . 8
Figure 4. Audio codec hardware implementation. 9
Figure 5. Driver’s functional flowchart 1. 16
Figure 6. Driver’s functional flowchart 2. 17
Figure 7. Demo’s functional flowchart 1. 20
Figure 8. Demo’s functional flowchart 2 . 21

AN2739 I2S general description

 5/26

1 I2S general description

1.1 I2S protocol
I2S (IC-to-IC sound) is an audio data transfer standard using a three-line bus for serial and
synchronous data transmission.

Data are transmitted on the SD line (Serial Data) in Little Endian format (MSB first). Data
length is not limited (usually 16/20/24/32/64 bits). Data are synchronized by the rising or
falling edge of SCK (Serial Clock) for the transmitter, and by the falling edge of SCK for the
receiver. Refer to Figure 1.

Data represent stereo digital sound, so each sample contains two words, the right-channel
sample and the left-channel sample. Instead of using two data channels, multiplexing is
performed by transmitting each word over half a sampling period, which doubles the
sampling rate, and makes it possible to transmit two words per period.

A control signal WS (Word Select) is then used to determine if the word being sent is the
right or left one. This signal also determines the beginning and the end of the data: there is
no need to fix the data length. Receiver and transmitter data lengths can therefore be
different, as well as the right and left data lengths.

WS is synchronized to either the rising or the falling edge of SCK and precedes the MSB by
one SCK period in order to have enough time to store and shift operations.

As in most communication protocols, there must be a master and a slave. The master
provides and controls the SCK clock and the WS signal, while the slave only sends or
receives data. The master can be the receiver, the transmitter or a third element (Controller).
Refer to Figure 2.

Figure 1. I2S Phillips protocol waveforms 16/32-bit

Transmission Reception

CK

WS

SD
MSB MSBLSB

16-bit or 32-bit

Left channel Right channel

ai15112

I2S general description AN2739

6/26

Figure 2. I2S protocol signal description and configuration

1.2 STM32F103xx I2S feature presentation
The STM32F103xx implements the I2S feature as a mode included in the SPI peripheral.
The user has to choose either the SPI mode or the I2S mode (software configuration).

The STM32F103xx I2S is available in simplex mode only (receive-only or transmit-only), the
communication direction is configured by software.

The I2S peripheral supports four audio protocols (configurable by software):

● I2S Phillips protocol

● MSB protocol

● LSB protocol

● PCM protocol (including PCM Short and PCM Long)

It also supports most audio frequencies (8 kHz, 16 kHz, 22.05 kHz, 44.1 kHz, 48 kHz, etc.)

The data format is programmable to 16-, 24- or 32-bit data length (for each channel), MSB
first, and to 16- or 32-bit packet length (for each channel).

The WS signal assignment is managed by hardware and a relative flag (CHSIDE) is
available to monitor the channel side (for Phillips, MSB and LSB standards).

The I2S peripheral can be configured as the master or the slave in the audio communication.
The I2S generates its own clock (independent of the SPI clock used to interface registers to
the APB bus) using a 9-bit prescaler and designed to reach accurate audio frequencies
(8 kHz, 16 kHz, 22.05 kHz, 44.1 kHz, 48 kHz, etc.)(a). When configured in master mode, the
peripheral is able to output an additional master clock (MCLK) at a fixed rate: 256 × FS
(where FS is the audio frequency).

CK

WS

SD

ai15113

Transmitter Receiver

Transmitter = Master

CK

WS

SD
Transmitter Receiver

Receiver = Master

CK

WS

SD
Transmitter Receiver

Controller = Master

Controller

a. The sampling frequency is the bit clock frequency (CK) and is equal to:
FS × number of bits per channel × number of channels, where FS is the WS frequency in the Phillips, MSB and
LSB standards and, the WS/2 frequency in PCM mode.

AN2739 I2S general description

 7/26

To decide if MCLK should be generated or not, the following facts have to be taken into
consideration:

● The external I2S device requirements (codec/DAC).
In general these devices need a master clock (usually at the rate 256 × FS) to perform
internal and sampling operations.

● The audio frequency accuracy is, in some cases, compromised by enabling the MCLK
output (that is when a low-frequency clock is driving the STM32F103xx system
(SYSCLK less than 36 MHz)).

The audio communication can be controlled in one of the following ways:

– by polling on the TXE/RXNE flag (bits 1/0 in SPI_CR2 register): wait until
TXE/RXNE flag is set then write/read the channel wave data to/from the SPI_DR
register. (Suitable for tests/small applications, etc.)

– Interrupt on TXE/RXNE: configure and enable the transmit/receive interrupt. And
in the interrupt subroutine, write/read the channel wave data to/from the SPI_DR
register. (Suitable for most applications/RT software, etc.)

– DMA transfer: configure the DMA to load/unload the data from/to the SPI_DR
register on each Rx/Tx request. (Suitable for high-performance requirements.)

Note: In I2S mode, the DMA is used in exactly the same way as the SPI mode (with respect to the
supported audio transmission protocols, the CRC feature is not available in I2S mode).

The choice of the SYSCLK frequency directly impacts the I2S transmission quality (in
master mode): the sampling clock (CK) and WS clock are derived directly from SYSCLK
divided by a 9-bit prescaler in order to obtain the most accurate FS frequency. For maximum
accuracy, the prescaler allows odd division by two (using the ODD bit in the SPI_I2SPR
register).

But when the SYSCLK frequency is too low (it is typically greater than 36 MHz), the division
results in a low accuracy factor leading to audio quality degradation.

Implementation example AN2739

8/26

2 Implementation example

2.1 General overview
The example presented in this application note aims at providing typical hardware and
software implementation basics for an audio application like portable audio players, sound
synthesis systems, speech recorders, cell phones or interactive control boards.

Typically, the system embeds:

– a microcontroller (STM32F103xx device)

– an audio codec

– a speaker

– a memory support (where the audio file is stored).

Figure 3. Typical implementation design description

1. The audio input functionality (microphone) is not discussed in this application note.

The audio file format supported by the application is PCM, 16-bit data length, stereo/mono
channels, 8 to 48 kHz audio frequency.

2.2 Hardware description

General requirements

The developed example is mainly based on the STM3210E-EVAL evaluation board but the
functional and structural description is similar for most applications and platforms.

The memory in which the audio file is stored is the NOR Flash memory implemented on the
board. A different memory/source may be configured as the audio file support (like the SPI
Flash memory).

ai15114

LCD FSMC Codec

Memory controller

I2C

I2S

Display

controls

Control flow

Data flow

STM32F103xx
(1)

Data flow
& memory control

Memory
Audio file:
 PCM
 16 bits
 Stereo
 8.48 kHz

AN2739 Implementation example

 9/26

Other board resources are used to interface the application:

● Audio codec: AK4343 implemented on the STM3210E-EVAL and connected to the
I2S2 interface (and to relative passive components).

● Stereo audio speaker and audio jack connected to the audio codec and implemented
on the STM3210E-EVAL.

● Joystick and key push-buttons: connected to the PG7, PD3, PG13, PG14, PG15 and
PG8 pins on the board. These push-buttons are used to control the audio stream.

● LCD screen: implemented on the STM3210E-EVAL evaluation board and controlled by
the FSMC interface.

2.2.1 Audio codec

The audio codec implemented on the STM3210E-EVAL is the AK4343 from AKM. This
codec allows digital (PCM raw data transmitted with I2S protocol) to analog conversion. The
audio parameterization and the codec configuration are performed through an I2C interface.
The codec has 36 configuration registers mainly used to:

● program the audio output (speaker or headphone) and input (analog input or digital I2S
data, etc.).

● enable or disable the master clock feature and, set the reference clock for internal and
sampling operations.

● set the digital volume level, the mute status and the digital filter coefficients.

The codec can operate in different modes. The modes allowed by the hardware board
implementation are listed below:

● PLL Slave mode: the internal codec clock is derived, with an internal PLL, from an
external clock. The external clock can be either the bit clock (SCK) or the channel clock
(WS) (this mode requires a high clock accuracy on SCK/WS clock).

● EXT slave mode: no PLL is used and the internal clock is derived from the MCLK input
clock (at 256 × FS frequency rate).

Figure 4 illustrates the hardware implementation schematic and how the codec is connected
to the STM32F103xx and the board components.

Figure 4. Audio codec hardware implementation

I2S_WS
I2S_SD

I2S_SCK

3
2

1

JP18

MCKO
TP7

+3V3

1uF
C59

I2C_SCK
I2C_SDA

10uF
C65

100nF
C54

2.2uF
C53

100nF
C34

+3V3
10uF
C73

100nF
C66

10uF
C79

100nF
C16

+3V3

+3V3

10
R83

0.22uF
C67

10
R73

0.22uF
C76

10
R86

6.8
R87

6.8
R84

47uF

C80
47uF

C70

1

3

2

Jack Output

CN15

1
2

KSS-1508
SPEAKER

CCLK/SCL9

CDTI/SDA10

SDTI11

TEST2 12

LRCK13

BICK14

DVDD15

DVSS16

MUTET25

ROUT/RCN 26LOUT/RCP 27

MIN/LIN3 28RIN2/IN2- 29LIN2/IN2+ 30LIN1/IN1- 31RIN1/IN1+ 32TEST1 1

VCOM 2

AVSS 3

AVDD 4

VCOC/RIN3 5

I2C6

PDN7

CSN/CAD08

MCKI17 MCKO18

SPN 19SPP 20

HVDD21

HVSS22

HPR 23HPL 24

AK4343

U10

Audio_RIN
Audio_LIN

1uF

C56

1uF

C57

0R67
0R68

RIN
TP9

LIN

TP6

HPL
TP10

HPR
TP8

SPP
TP12

SPN
TP13I2S_MCK

Default setting: 1<->2

PC6

PB12
PB13

PB15

PB7
PB6

PA5
PA4

PG11 (PDN)

DAC Output

I2S Interface

I2C Interface

ai15128

Implementation example AN2739

10/26

When the MCLK clock is enabled (by configuring the relative configuration register), MCKI
jumper (JP18) should be configured in the 2<>3 position in order to drive the MCLK signal
from the STM32F103xx I2S interface to the codec MCLKI pin.

The default codec configuration used in this application note is:

● I2S standard: I2S Phillips (can be changed to MSB or LSB standards)

● MCLK clock enabled at 256 × FS frequency rate and PLL disabled. (Disabling the
MCLK clock might lead to a reduced audio quality due to the high accuracy needed on
the alternative clocks: WS or CK)

● The default output is the headphone but the configuration can be changed before or
during the application execution (using the up/down joystick push-buttons).

Codec configuration steps

● Power up the codec (supply voltage) and activate it (pull the PDN pin high). This
operation causes all the codec registers to reset.

● Select the audio protocol (Phillips, MSB or LSB) by writing to Mode Control 1 register at
address 0x04.

● Select the MCLK rate (256 × FS) if the MCLK mode is configured, by writing to the
Mode Control 2 register at address 0x05.

● Power up the internal modules of the codec by writing to the Power Management 1
register at address 0x00.

● To set the PLL mode, write to the Power Management 2 register at address 0x01.

● Supply the main clock to the codec (either the MCLK or the SCK/WS clocks) by
sending dummy data (this clock must be supplied through all subsequent operations).

● Choose the audio output device:

– select headphone by writing to the Mode Control 4 register at address 0x0F

– select speaker by writing to the Signal Select register at address 0x02

● Configure the digital volume by writing to the Lch Digital Volume Control and Rch
Digital Volume Control registers at addresses 0x0A and 0x0D, respectively.

● Power up:

– the speaker by writing to the Power Management 1 register at address 0x00

– the headphone by writing to the Power Management 2 register at address 0x01

● Exit the Mute mode by writing to the Power Management 1 register at address 0x00.

● Send the audio data through the I2S interface and stop I2C communications.

In the I2S_CODEC driver file, a single function performs the codec configuration:

CODEC_Config(u16 OutputDevice, u16 I2S_Standard, u16 I2S_MCLKOutput, u8 Volume)

2.2.2 STM32F103xx and board configuration

The STM32F103xx peripherals used for this application are: I2S2 for audio communication,
I2C1 for codec configuration and the memory interface (could be FSMC for NOR Flash
memory or SPI1 for SPI_Flash memory, etc.).

● Since the MCLK feature is enabled, configure MCKI Jumper (JP18) in the 2<>3
position to connect the I2S2 MCLK signal to the MCLKI codec pin.

● If the audio file to be played has a big size, it should be previously loaded into the
memory source (NOR Flash memory or SPI Flash) using an independent application
(IAP, DFU, etc.). It may also be included as a table file.

AN2739 Implementation example

 11/26

For more details, refer to the STM3210E-EVAL evaluation board user manual on
www.st.com.

2.3 Firmware description
This application note is based on:

● the STM32F10xxx firmware library

● the I2S_CODEC driver firmware (offering the main functions required to control the
codec and I2S environment for an audio application)

● a specific firmware to call the I2S_CODEC driver functions, as well as other functions
required for control and display (main.c and stm32f10x_it.c files).

The user may build any similar application using the same library and driver, and different
interfacing firmware/hardware.

2.3.1 I2S_CODEC driver firmware description

The user may interface the audio codec directly through the driver application layer. The
driver functions are summarized in the following sections. Table 1 presents the general
driver file organization.

High-level functions

These are the functions that can simply be called by the final application to execute all
needed configurations and perform high-end functionalities (like playing a wave sound,
pausing playing, configuring all the hardware components, etc.).

These functions are presented in Table 2

 .

Table 1. Driver library description

File Description

i2s_codec.h,
i2s_codec.c

– I2S and codec definitions, type definitions and function prototypes

– Basic functions (init, read, write, play, pause, stop, etc.).

Table 2. I2S_CODEC driver high-level functions

Function name Description

I2S_CODEC_Init
Initializes the entire application environment (I2S, I2C, codec,
memory)

I2S_CODEC_ReplayConfig
Sets the number of replays (number of stream playing loops ≥ 1 or
0 for infinite loop)

I2S_CODEC_Play
Causes the audio file to start playing (or to resume from Paused
state)

I2S_CODEC_Pause Pauses the audio stream playing and saves the current position

I2S_CODEC_Stop Causes the audio file to stop playing and resets all local pointers

I2S_CODEC_ControlVolume Increases/Decreases/Sets the digital volume

I2S_CODEC_Mute Causes the codec to mute the released sound.

Implementation example AN2739

12/26

Only the most relevant functions will be detailed in the following sections.

● I2S_CODEC_Init function

This function implements all the needed initialization for the I2S, the codec and the
memory interfaces and peripherals.

This function calls some subfunctions related to each component:

– NVIC_Config: Configures the I2S interrupt channel

– GPIO_Config: Configures the I2S, I2C, memory- and codec-related GPIOs.

– AudioFile_Init: Initializes the memory then reads the audio file header,
checks if it is compliant with the supported audio format and sets the related
parameters (audio file length and frequency) used to configure the other
peripherals.

– I2S_Config: Configures the I2S peripheral according to the previous
parameters. Standard and MCLK output are configured using two constants:
I2S_STANDARD and I2S_MCLKOUTPUT, defined in the i2s_codec.c file.

– CODEC_Config: Configures the codec using the same configuration parameters
as I2S_Config, and using the OutputDevice input parameter (from
I2S_CODEC_Init), that is either OutputDevice_SPEAKER or
OutputDevice_HEADPHONE. The digital volume is set at a default level defined in
the i2s_codec.h file as DEFAULT_VOL.

I2S_CODEC_ForwardPlay
Increments the audio file pointer by a fixed step (percentage of the
file length) then continues playing.

I2S_CODEC_RewindPlay
Decrements the audio file pointer by a fixed step (percentage of
the file length) then continues playing.

Table 3. I2S_CODEC_Init function

Function name I2S_CODEC_Init

Prototype u32 I2S_CODEC_Init(u32 OutputDevice, u32 Address)

Behavior description
Initializes the I2S and the I2C peripherals, the codec, the memory and the
audio file.

Input parameters

OutputDevice: used to set the output device, can be:

– OutputDevice_SPEAKER
– OutputDevice_HEADPHONE

Address: specifies the address of the audio file.

Output parameter None

Return value

– 0: if all initializations were successful
– 1: Memory initialization failure

– 2: Audio file failure (wrong file or wrong format)

– 3: I2C communication failure

Required preconditions None

Called functions
NVIC_Config, GPIO_Config, AudioFile_Init, I2S_Config,
CODEC_Config

Table 2. I2S_CODEC driver high-level functions (continued)

Function name Description

AN2739 Implementation example

 13/26

Table 4 lists all the parameters that have to be set in order to correctly configure the
application (some are automatically set by the I2S_CODEC_Init function, others are
constants defined in the driver files).

● I2S_CODEC_ReplayConfig function

This function sets the number of times the audio file stream will be repeated (replayed)
each time its end is reached.

Table 4. Configuration parameters list

Parameters Values Location Default value

OutputDevice
– OutputDevice_SPEAKER

– OutputDevice_HEADPHONE
I2S_CODEC_Init
function Input

OutputDevice_HEADPHONE

Address
Any value in respect to the
memory size.

I2S_CODEC_Init
function Input

AudioFileAddress =
0x6406 0000 (variable in
i2s_codec.c file)

I2S_STANDARD

– I2S_Standard_Phillips

– I2S_Standard_MSB

– I2S_Standard_LSB

Constant in i2s_codec.h
file:

I2S_Standard_Phillips

I2S_MCLKOUTPUT
– I2S_MCLKOUTPUT_Enable

– I2S_MCLKOUTPUT_Disable
Constant in i2s_codec.h
file

I2S_MCLKOUTPUT_Enable

DEFAULT_VOL
– Any value from 0xFF(Mute)

and 0x00 (Max volume).
Constant in i2s_codec.h
file.

0x48

I2S_AudioFreq
– 8000, 16000, 22050, 44100

or 48000.

Automatically detected: Set
by AudioFile_Init
function

--

AudioDataLength
– Total Length of the current

audio file stream.

Automatically detected: Set
by AudioFile_Init
function.

--

DataStartAddr

– First audio data offset into
the current audio file
(corresponds to the header
length).

Automatically detected: Set
by AudioFile_Init
function.

--

Table 5. I2S_CODEC_ReplayConfig function

Function name I2S_CODEC_ReplayConfig

Prototype void I2S_CODEC_ReplayConfig(u32 Repetions)

Behavior description Sets the number of current audio stream repetitions to Repetitions value (input).

Input parameter Repetitions: any number ≥ 1 or 0 for infinite replay.

Output parameter None

Required preconditions None

Called functions None

Implementation example AN2739

14/26

● I2S_CODEC_Play function

This function starts playing the audio file from a programmable position.

● I2S_CODEC_ControlVolume function

This function controls the digital volume level in accordance with the input parameters
(increases, decreases or sets a volume level).

Table 6. I2S_CODEC_Play function

Function name I2S_CODEC_Play

Prototype u32 I2S_CODEC_Play(u32 AudioStartPosition)

Behavior description
Sets the memory read address to AudioStartPosition and enables the I2S
interrupt to begin sending audio data to the codec. (Update the status of
the current audio file to playing).

Input parameter
AudioStartPosition: first address of the audio data to be played in the
current stream (relatively to the audio file, after the end of the audio file
header, and not relatively to the memory).

Output parameter None

Required preconditions None

Called functions None.

Table 7. I2S_CODEC_ControlVolume function

Function name I2S_CODEC_ControlVolume

Prototype u32 I2S_CODEC_ControlVolume(u32 direction, u8 volume)

Behavior description
Depending on the direction value, increases, decreases or sets a volume
level defined by the volume variable.

Input parameter

– direction: VolumeDirection_HIGH or VolumeDirection_LOW,
respectively to increment/decrement the current volume by a step:
“volume” value. Or VolumeDirection_LEVEL to set the volume value
to “volume“.

– volume: any step value (from 0xFF and 0x01) or any level value from
0xFF (Mute) and 0x00 (Max volume)

Output parameter None

Required preconditions None

Called functions None.

AN2739 Implementation example

 15/26

Medium-level functions

Medium-level functions are used to better control some basic functionality and the audio
stream. Table 8 presents these functions.

Table 8. I2S_CODEC medium-level driver functions

Function name Description

I2S_CODEC_DataTransfer

Sends the audio data using the SPI2 peripheral and checks
the audio play status (if a (Pause/Stop) command is pending)
by calling the I2S_CODEC_UpdateStatus function.

This function should be called in the SPI2 TXE interrupt
subroutine when the interrupt mode is used.

I2S_CODEC_UpdateStatus

Checks if the current status (through a local variable:
AudioPlayStatus) is Playing, Paused or Stopped. If the
commanded status is Stopped or Paused the function
performs the requested command and updates the local
variables.

GetVar_DataStartAddr
Returns the current audio Data Start Address value for the
current stream (depends on the audio file type and the file
header length).

GetVar_AudioDataIndex
AudioDataIndex is the virtual audio data pointer for the audio
file being played. This function returns the current value of the
AudioDataIndex.

ResetVar_AudioDataIndex
Resets the AudioDataIndex to the current audio file Data Start
Address value.

IncrementVar_AudioDataIndex
Increments the AudioDataIndex of the current audio file by a
programmable value step (input of the function).

GetVar_AudioPlayStatus
Returns the current AudioPlayStatus variable value (Playing,
Stopped, Paused).

Implementation example AN2739

16/26

Low-level functions

Some low-level functions provide flexible management of the memory (SPI Flash/NOR,
etc.). Other types of memories can be supported simply by replacing the body of these low-
level functions by the corresponding functions for the memory.

Example: the Media_Init function should contain the entire memory initialization
procedure. The application can just call to corresponding memory driver function (that is the
NOR_Init() function).

Driver firmware flowcharts

Figure 5 and Figure 6 illustrate the driver functionality.

Figure 5. Driver’s functional flowchart 1

Table 9. I2S_CODEC low-level driver functions

Function name Description

Media_Init Calls the initialization procedure for the used memory medium.

Media_StartReadSequence Enables reading from the memory medium.

Media_ReadByte Reads and returns a byte from the memory medium.

Media_ReadHalfWord Reads and returns a half word from the memory medium.

Media_BufferRead
Reads a buffer of bytes from the memory medium (used to read
the wave file header).

I2S_CODEC_Init

Play Pause Stop

Initialize GPIOs
and memory

Read audio file header,
set audio parameters

Correct format

Read audio file header,
set audio parameters

Configure I2S, I2C
and codec

End

Audio file

Set the Playing
status variable

Enable SPI2 TXE
interrupt

End

Initialize medium
reading sequence

Disable SPI2 TXE
interrupt

Save indexes

End

Power down
codec

Set the Paused
status variable

Disable SPI2 TXE
interrupt

Reset indexes

End

Power down
codec

Set the Stopped
status variable

Yes

ai15118

No

AN2739 Implementation example

 17/26

Figure 6. Driver’s functional flowchart 2

I2S_CODEC_Data
Transfer

Send dummy
data on I2S2

Audio file

End

Codec
configuration

phase

Read data from
memory

No

Yes

Send data on I2S2

Increment
data index

Pause / Stop

Status ==
Playing

Yes

End of stream

AudioReplayCount--

AudioReplay ==0

No

AudioReplayCount
 > 0

No

Yes

Play

End

Stop

AudioReplayCount =
AudioReplay

Yes

ai15119

Implementation example AN2739

18/26

2.3.2 Demo firmware description

The demo uses the i2s_codec driver functions to control the audio stream. Other functions
are implemented to make the application interactive.

Two main functions are handled by the application:

● Joystick and push-button input control

● LCD display output (all LCD-related functionalities are enabled only when the USE_LCD
constant is defined in the main.h file by uncommenting the following line:
#define USE_LCD).

Joystick_Config function

The push-button-related GPIO and EXTI configuration is performed by the
Joystick_Config function (instantiated in the main.c file).

The functionalities allowed by this configuration are explained in Table 11.

Table 10. Joystick_Config function

Function name Joystick_Config

Prototype u32 Joystick_Config(void)

Behavior description
Configures and initializes the EXTI, NVIC and GPIOs related to the
Joystick and the Key push-buttons.

Input parameter None

Output parameter None

Required preconditions None

Called functions None.

Table 11. Description of the Joystick functionalities

Button Function
Pin

location
EXTI
line

Key button
– Play: if the stream is paused.

– Pause: if the stream is Playing.
PG8 EXTI8

Joystick Up button
– Set Speaker as audio output device and begin

playing the file: if the stream is Paused or Stopped.

– Increase volume: if the stream is Playing.
PG15 EXTI15

Joystick Down button

– Set Headphone as audio output device and begin
playing the stream: if the stream is Paused or
Stopped.

– Decrease volume: if the stream is Playing.

PD3 EXTI3

Joystick Left button Forward and play: if the stream is Playing. PG14 EXTI14

Joystick Right button Rewind and play: if the stream is Playing. PG13 EXTI13

Joystick Select
button

Stop: if the stream is Playing. PG7 EXTI7

AN2739 Implementation example

 19/26

LCD_Update function

The LCD configuration and the current audio stream information display operations are
performed by the LCD_Update function as detailed in Table 12.

The example program implements the i2s_codec driver in a basic application that consists
in the following:

● Initialize the LCD and the displayed information

● Configure the Joystick and Key push-button GPIOs and related EXTI.

● Wait for an interrupt to execute one of the actions described in Table 11.

● Every time an interrupt is generated by pushing one of the buttons, the dedicated
operation is executed and the LCD display is updated according to the changed
parameter.

● Every time ~1% of the playing stream elapses an interrupt is generated by the
SystemTick timer and the Progress bar is computed. The LCD-related information is
then updated.

Table 12. LCD_Update function

Function name LCD_Update

Prototype void LCDUpdate(u32 Status)

Behavior description
Updates the information displayed on the LCD according to the parameter
Status. The information is gathered from the audio stream status and the
codec driver variables.

Input parameter

Status: determines which information has to be updated (all other
information remains unchanged). It can be:

– STOP, PLAY, PAUSE to update the control button menu lines and the
status line menu.

– FRWRWD to update the progress bar in case of forward or rewind.

– VOL to update the volume bar.

– PROGRESS to update the progress bar periodically.
– ALL to initialize the LCD and update all the information at once.

These values are defined in the main.h file.

Output parameter None

Required preconditions None

Called functions
LCD_DisplayStringLine, GetVar_CurrentVolume,
GetVar_AudioDataIndex, I2S_CODEC_LCDConfig.

Implementation example AN2739

20/26

Demo firmware flowcharts

Figure 7 presents the overall function flowchart.

Figure 7. Demo’s functional flowchart 1

After performing the configuration steps, the demo program enters an infinite loop, and only
interrupt subroutines are executed (the program can perform other tasks in the mean time).
Each interrupt subroutine performs an action depending on the current stream status
(Playing, Paused or Stopped) as detailed in Figure 8.

Main.c

Configure
SystemTick

While (1)

End

LCD configuration
and welcome screen

display

Joystick and Key
configuration

SystemTick
event

Up/down push-putton
pressed

Key push-button
pressed

SEL push-button
pressedWait for an interrupt

ai15120

Right/Left push-button
pressed

AN2739 Implementation example

 21/26

Figure 8. Demo’s functional flowchart 2

Error messages

If an error occurs during the initialization phase, the LCD_DisplayError function is called
(instantiate in main.c file). A message may be displayed on the LCD to determine the error
source:

● Memory error: the “ERROR: Memory ->RST" message is displayed, meaning that the
memory initialization failed and a system reset is needed to recover.

● Audio file error: the “ERROR: File ->RST" message is displayed, meaning that the
audio file initialization failed or the audio file format is not supported. A system reset is
needed to recover.

● I2C communication error: the "ERROR:I2C com. ->RST" message is displayed,
meaning that communication with the codec through the I2C interface failed. A system
reset is needed to recover.

Audio file loading

In order to use the application note firmware, an audio file with the allowed specifications
(refer to Section 2.4), has to be loaded into the used memory medium (the default memory
medium is the NOR Flash memory interfaced through the FSMC peripheral).

For this purpose, one of the three following procedures may be performed:

● Use the audio file from the demo delivered with the STM3210E-EVAL
STMicroelectronics evaluation board. The audio file is included in the DFU image of the
demonstration firmware and the file address to be used is the default address
(AUDIO_FILE_ADDRESS = 0x6406 0000 constant in main.h file, corresponding to
the NOR memory).

Up/Down
push-button

pressed

LCD_Update
(ALL)

Current status =
Playing

End

Set Speaker/
Headphone

I2S_CODEC_Int

Play

LCD_Update
(VOL)

Increase/
Decrease volume

Yes

No

Key push-button
pressed

LCD_Update
(PAUSE)

Current status =
Playing

End

Set current status =
Paused

LCD_Update
(PLAY)

Play

No

Yes

SEL push-button
pressed

LCD_Update
(STOP)

End

Stop

Set current status =
Stopped

SystemTick
event

LCD_Update
(Progress)

End

ai15121

Right/Left push-button
pressed

Forward/rewind

End

LCD_Update
(FRWRWD)

Set current status
= Playing

Implementation example AN2739

22/26

● Use the STMicroelectronics DFU demonstration firmware to compile any audio file and
load it into the memory (for more details, refer to the DFU section in the STM3210E-
EVAL evaluation board demonstration user manual). Once this DFU image is loaded,
the file address has to be set (using the AUDIO_FILE_ADDRESS constant in the
main.h file) and the application note firmware can then run correctly.

● Use a different application to load a wave file into the appropriate memory. The file
address has to be stored and used as input when calling the I2S_CODEC_Init
function. If the file is in Mono format, make sure that the first address is an even
number.

2.3.3 Timing considerations

Except during the configuration phase, all the programs run through interrupt subroutines.
This may be convenient to implement other tasks or to add some options (additional
displays, computing, audio encoding/decoding, etc.). Thus, some timing considerations are
to be respected.

The audio stream sampling frequency is the major timing factor. But audio frequencies are
many times slower than the frequencies of other communication IPs (for instance I2C runs at
up to 400 kHz, SPI at up to 18 MHz, etc.), which means that timing constraints are not very
tough.

The program must be able to release an audio data (16 bits) every 8/16/22.05/44.1/48 kHz.
This timeout includes the reading of data from the memory, the update of the stream status,
the increment of indexes and the information display update. If other tasks are implemented
(such as decoding operations), the period of time taken by all these operations has to be
inferior to the period between two data-sending operations (two SPI TXE interrupts in I2S
mode).

Interrupt priority

● Set the SPI interrupt (TXE in I2S mode) as the highest-priority NVIC channel (if another
interrupt takes a very short and deterministic time, it can have higher priority. Example:
the systick interrupt).

Memory accesses

Mainly, two operations should be as short as possible:

● Memory read operation: depending on the memory type, and the memory interface
configuration, reading the audio data from the file located in the memory could be a
long operation. In some cases, it may be necessary to optimize this operation (add
buffers, increase interface frequency, use DMA, etc.).

● Display update: this operation consists in writing data into the LCD RAM. Write access
to this RAM may also be long when many information are to be updated. This operation
is optimized in the demo application (group/ungroup information, create a separate
event for each information update, etc.).

Function calls

● In the interrupt file (stm32f10x_it.c), most handlers perform calls to i2s_codec
driver functions or main.c functions. In order to optimize time, some calls can be
replaced by the body of the function itself (with specific modifications, depending on the
application requirements).

AN2739 Implementation example

 23/26

2.4 General, allowed parameters

Audio file

Supported audio configuration is:

● Format: PCM

● Channel number: Stereo/Mono(b)

● Data length: 16 bits

● Frequency: 8 kHz, 16 kHz, 22.05 kHz, 44.1 kHz, 48 kHz (depending on the system
clock frequency)

● Length: depends on the memory used and the program memory usage (16 MB
available on NOR Flash memory and8 MB available on SPI Flash memory).

SPI peripheral

The SPI peripheral used for I2S communication is SPI2 and the relative allowed parameters
are:

● Mode: I2S master.

● Standard: I2S Phillips, MSB, LSB(c)

● Master Clock: Enabled or disabled (depends on the system clock, the audio frequency
and the audio file type (speech, music, etc.)).

● Frequencies: 8 kHz, 16 kHz, 22.05 kHz, 44.1 kHz, 48 kHz.

● Data format: 16-bit data length in 16-bit packets.

b. This configuration only depends on the codec. If a different codec is used, the Mono format may not be
available.

c. This configuration only depends on the codec. If another codec type is used, this parameter may be different.

Conclusion AN2739

24/26

3 Conclusion

This application note explains the basics to build an interactive audio playing application
using the STMicroelectronics evaluation board with an audio codec, a speaker, a
headphone jack and an optional LCD. The application may be enhanced by
adding/removing some options depending on the requirements.

AN2739 Revision history

 25/26

4 Revision history

Table 13. Document revision history

Date Revision Changes

30-May-2008 1 Initial release.

AN2739

26/26

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

	1 I2S general description
	1.1 I2S protocol
	Figure 1. I2S Phillips protocol waveforms 16/32-bit
	Figure 2. I2S protocol signal description and configuration

	1.2 STM32F103xx I2S feature presentation

	2 Implementation example
	2.1 General overview
	Figure 3. Typical implementation design description

	2.2 Hardware description
	2.2.1 Audio codec
	Figure 4. Audio codec hardware implementation

	2.2.2 STM32F103xx and board configuration

	2.3 Firmware description
	2.3.1 I2S_CODEC driver firmware description
	Table 1. Driver library description
	Table 2. I2S_CODEC driver high-level functions
	Table 3. I2S_CODEC_Init function
	Table 4. Configuration parameters list
	Table 5. I2S_CODEC_ReplayConfig function
	Table 6. I2S_CODEC_Play function
	Table 7. I2S_CODEC_ControlVolume function
	Table 8. I2S_CODEC medium-level driver functions
	Table 9. I2S_CODEC low-level driver functions
	Figure 5. Driver’s functional flowchart 1
	Figure 6. Driver’s functional flowchart 2

	2.3.2 Demo firmware description
	Table 10. Joystick_Config function
	Table 11. Description of the Joystick functionalities
	Table 12. LCD_Update function
	Figure 7. Demo’s functional flowchart 1
	Figure 8. Demo’s functional flowchart 2

	2.3.3 Timing considerations

	2.4 General, allowed parameters

	3 Conclusion
	4 Revision history
	Table 13. Document revision history

