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Application note

Using the STM32F101xx and STM32F103xx DMA controller

1 Introduction

This application note describes how to use the STM32F101xx and STM32F103xx direct 
memory access (DMA) controller. The STM32F101xx and STM32F103xx DMA controller, 
the Cortex™-M3 core, the advanced microcontroller bus architecture (AMBA) bus and the 
memory system contribute to provide a high data bandwidth and to develop very-low latency 
response time software.

This application note also describes how to take full advantage of these features and ensure 
correct response times for different peripherals and subsystems.

The STM32F101xx and STM32F103xx will be referred to as STM32F10xxx, and the DMA 
controller as DMA throughout the document.
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2 DMA controller description

The DMA is an AMBA advanced high-performance bus (AHB) module that features two 
AHB ports: a slave port for DMA programming and a master port that allows the DMA to 
initiate data transfers between different slave modules.

The DMA allows data transfers to take place in the background, without the intervention of 
the Cortex-M3 processor. During this operation, the main processor can execute other tasks 
and it is only interrupted when a whole data block is available for processing. Large amounts 
of data can be transferred with no major impact on the system performance.

The DMA is mainly used to implement central data buffer storage (usually in system SRAM) 
for different peripheral modules. This solution is less expensive in terms of silicon and power 
consumption compared to a distributed solution where each peripheral needs to implement 
it own local data storage.

The STM32F10xxx DMA controller takes full advantage of the Cortex-M3 Harvard 
architecture and the multilayer bus system in order to ensure very low latency both for DMA 
transfers and for CPU execution/interrupt event detection/service. 

Depending on the sales type used, one or two DMA controllers are implemented.

2.1 Main features
The DMA(s) offer(s):

● Twelve DMA channels (7 for DMA1 and 5 for DMA2) supporting unidirectional data 
transfers from source to destination

● Hardware- and software-programmable channel priority for each DMA

● Memory-to-memory, memory-to-peripheral, peripheral-to-memory and peripheral-to-
peripheral transfers (memory can be SRAM or Flash)

● Control of hardware/software transfers

● Automatic increment of peripheral and memory pointers

● Programmable data size

● Automatic bus-error management

● Non-circular/circular mode

● Transfer of up to 65536 data tokens

The DMA aims to offer a relatively large data buffer to all peripherals. This buffer is usually 
located in system SRAM.

Each channel is assigned to a unique peripheral (data channel) at a given time. Peripherals 
connected to the same DMA channel (CH1 to CH7 in Table 1, CH1 to CH5 in Table 2) 
cannot be used simultaneously with active DMA (DMA function active in the peripheral 
register).

The different peripherals supporting DMA transfers are shown in Table 1 and Table 2. The 
peripherals served by the DMA and the bus system structure are represented in Figure 1.
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Table 1. Peripherals served by DMA1 and channel allocation

Peripherals CH1 CH2 CH3 CH4 CH5 CH6 CH7

ADC ADC1 ADC1

SPI
SPI1 SPI1_RX SPI1_TX

SPI2 SPI2_RX SPI2_TX

USART

USART1
USART1_

TX
USART1_RX

USART2 USART2_RX USART2_TX

USART3 USART3_TX USART3_RX

I2C
I2C1 I2C1_TX I2C1_RX

I2C2 I2C2_TX I2C2_RX

TIM

TIM1 TIM1_CH1 TIM1_CH2
TIM1_CH4
TIM1_TRIG

TIM1_COM

TIM1_UP TIM1_CH3

TIM2 TIM2_CH3 TIM2_UP TIM2_CH1
TIM2_CH2

TIM2_CH4

TIM3 TIM3_CH3
TIM3_CH4

TIM3_UP

TIM3_CH1

TIM3_TRIG

TIM4 TIM4_CH1 TIM4_CH2 TIM4_CH3 TIM4_UP
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Figure 1. Bus system and peripherals supporting DMA

Table 2. Peripherals served by DMA2 and channel allocation
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3 Performance considerations

The STM32F10xxx’s three master modules are the Cortex-M3 processor and the two 
DMAs. They are connected to the slave buses, the Flash memory bus, the SRAM bus, the 
FSMC bus and the AHB system bus, through a bus matrix. The AHB system bus is in turn 
connected to the two APB buses that serve all the embedded peripherals (see Figure 1) but 
one –the SDIO peripheral which is directly connected to the AHB system bus.

The bus matrix has two main features that allow to maximize the system performance and 
reduce the latency:

● Round-robin priority scheme

● Multi-layer structure and bus stealing

3.1 Round robin priority scheme
The NVIC and Cortex-M3 processor implement a high-performance very low latency 
interrupt scheme. All Cortex-M3 instructions are either executed in a single cycle or are 
interruptible at cycle level. In order to preserve this advantage at system level, the DMA and 
bus matrix ensure that the DMA does not block the bus for a long time. The round-robin 
priority scheme ensures that the CPU can access any slave bus during every third cycle, if 
needed. As a consequence, the maximum bus system latency for the first data, seen from 
the CPU, is of one bus cycle (maximum two APB clock cycles). 

3.2 Multi-layer structure and bus stealing
The multi-layer structure allows the two/three masters to perform data transfers concurrently 
as long as they are addressing different slave modules. On top of the Cortex-M3 Harvard 
architecture, this structure enhances data transfer parallelism, thus contributing to reduce 
the execution time and optimize the DMA efficiency. As instruction fetches from the Flash 
memory are performed through a completely independent bus, the DMA and CPU only 
compete for data access through a given slave bus.

In addition, the STM32F10xxx DMA uses one single bus cycle for data transfers (bus 
stealing) while other DMA controllers operate in burst mode. When using the bus-stealing 
access mechanism, the maximum time during which the CPU is stalled awaiting for data is 
very small (1 bus cycle). CPU accesses to SRAM are naturally interleaved with DMA 
accesses, the CPU accesses taking place in parallel with the DMA access to the peripheral 
through the APB bus. Even though further data accesses may be faster when using DMA 
with burst mode (during the periods when the DMA performs peripheral data transfer), the 
long period of time during which the CPU is stalled is seldom recovered. Refer to Figure 2 
for a comparison between bus stealing and burst mode mechanisms.

The extreme case occurs when the CPU copies data from memory to memory. In this case 
the software execution is delayed by the time taken by the whole DMA transfer. However, 
most of the time, the CPU performs data processing. Data accesses are less frequent 
(register store/load) allowing natural interleaving of DMA and CPU accesses.

The inherent parallelism of the STM32F10xxx bus structure, associated with the DMA bus-
stealing mechanism ensure that the CPU is not stuck for long periods of time waiting to read 
data from the SRAM. DMAs with bus stealing mechanism consequently use the bus in a 
more efficient way, thus significantly contributing to reduce the total software execution time.
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Figure 2. Bus stealing vs. burst mode for DMA transfer

3.3 DMA latency
Three operations are required to perform a DMA data transfer from peripheral to SRAM 
memory. When storing ADC continuous conversion data in SRAM, the following steps must 
be followed: 

1. DMA request arbitration & address computation

2. Reading data from the peripheral (DMA source) 

3. Writing loaded data in SRAM (DMA destination)

When transferring data from SRAM to peripheral (for example SPI transmission), the 
operations are performed in the opposite order:

1. DMA request arbitration & address computation

2. Reading data from SRAM memory (DMA source) 

3. Writing data to the peripheral through the APB bus (DMA destination)

The service time per channel, tS, is given by the equation below:

where:

● tA is the arbitration time

tA = 2 AHB clock cycle

● tACC is the peripheral access time

tACC = 1 AHB clock cycle (bus matrix arbitration) 

+ 2 APB clock cycles (effective data transfer) 

+ 1 AHB clock cycle (bus synchronization)

● tSRAM is the SRAM read or write access time

tSRAM = 1 AHB clock cycle (bus matrix arbitration) 

+ 1 AHB clock cycles (single read/write operation) or 2 AHB clock cycles in case of 
SRAM read-after-write access. 
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When the DMA is idle or after the third operation has completed on one channel, the DMA 
compares the priorities of all pending DMA requests (software and hardware priorities, in 
this order). The highest priority channel is served next and the DMA jumps to execute the 
second operation. While a channel is being served (operation 2 or 3 ongoing), no other 
channel can be served whatever its priority.

As a results, when at least two DMA channels are enabled, the DMA latency for the highest 
priority channel is the sum of the ongoing transfer time (without the arbitration phase) and 
the transfer time for the next DMA channel to be served (highest pending priority).

For the case where only one DMA channel is active, a new request cannot be treated before 
completely closing the previous one (DMA rq/ack handshake). For this the total service time, 
tTS, must be used:

, where:

– tBF is the bus free time (bus left free for CPU access)

tBF = 1 AHB clock cycle

– tAck is the DMA acknowledge time (closing the handshake between peripheral & 
DMA)

tAck = 1 AHB clock cycle 

3.4 Databus bandwidth limitation
The data bus bandwidth limitation is mainly due to the fact that the APB buses are slower 
than the system SRAM and the AHB bus. Two conditions must be respected for the highest 
priority DMA channel (see Figure 3). 

1. When more than one DMA channel is enabled, the required data bandwidth for the 
highest priority channel on the APB bus must be lower than 25% of the maximum APB 
transfer rate. The complete duration of an APB bus transfer must be taken into account. 
It is equal to 2 APB clock cycles plus 2 AHB clock cycles for arbitration/synchronization. 

2. Even though the high speed/high priority DMA transfers usually take place on APB2 
which is the faster APB bus, the CPU and other DMA channels may access peripherals 
on APB1. As 3 out of 4 remaining APB transfers may be performed on APB1, the 
minimum possible APB2 frequency depends on the fastest DMA channel data 
bandwidth.

The maximum APB clock division factor is given by the equation below:

if

, where:

– fAHB is the AHB clock frequency,

– N1 and N2 are APB1 and APB2 clock division factors, respectively,

– Bmax is the maximum peripheral data bandwidth on APB2 expressed in 
transfers/s.

tTS tA tAcc t+ SRAM tBF t+ Ack+ +=

fAHB 2 N2 2 3+ + 2 N2 2+   Bmax

N2 N1 N1
1

16
------ fAHB Bmax 
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Figure 3. APB bus occupation during DMA transfers

1. DMA1 is the highest priority channel.
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3.5 Choosing channel priority
In order to achieve continuous data transfers to/from a peripheral, the corresponding DMA 
channel must be able to sustain the peripheral data rate and ensure that the service latency 
is shorter than the period of time between two consecutive data. 

The high speed/high bandwidth peripherals must have the highest DMA priorities. This 
ensures that the maximum data latency will be respected for these peripherals and 
over/under-run conditions will be avoided.

In case of equal bandwidth requirements, it is recommended to assign a higher priority to 
the peripherals working in slave mode (which have no control on the data transfer speed) 
compared with the ones working in master mode (which may control the data flow).

By default, the channel allocation and hardware priority (from 1 to 7) are set in order to 
assign the fastest peripherals to the highest priority channels. However, this may not be true 
for some applications. In this case, the user can configure a software priority for each 
channel (4 levels – from Very High to Low), which takes precedence over the hardware 
priority.

When using several peripherals in parallel (with or without DMA), the user must make sure 
that the internal system can sustain the total data bandwidth required for the application. A 
compromise must be find between two factors: 

● The application requirements for each peripheral

● The internal data bandwidth

3.5.1 Application requirements

As an example, the data bandwidth for an SPI interface is obtained by dividing the baud rate 
by the data word length used by the SPI (since one full data needs to be transferred to/from 
the SPI before/after each transmission). Let us take the example of an SPI interface 
performing 8-bit data transfers at 18 MBaud, and configured to operate in simplex mode. In 
this case, the internal data bandwidth requirement are of 2.25 Mtransfers/s. 

Note: The data bandwidth can be divided by 2 when using the SPI in 16-bit mode: with the same 
baud rate, it only requires a transfer speed of 1.125 Mtransfers/s. 

It is strongly recommended, whenever possible, to use the 16-bit mode in order to minimize 
bus usage and power consumption.

3.5.2 Internal data bandwidth

The internal data bandwidth depends on:

● The bus frequencies

The available data bandwidth is directly proportional to the bus clock frequency.

● The bus type

AHB data transfers take 2 clock cycles, except for SRAM read-after-write accesses that 
take 3 cycles. Data transfers to a peripheral through an APB bus takes 2 APB clock 
cycles plus 2 AHB clock cycles dedicated to bus matrix arbitration and data 
synchronization.

It is recommended to keep the DMA bus usage below 2/3 in order to maintain the system 
and CPU performance at a reasonable level.
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4 DMA programming examples

All the examples described below use the STM32F10xxx Standard peripheral library and 
are provided in the firmware package associated with this application note. Both the 
package and the application note are available for download from the STMicroelectronics 
website: http://www.st.com.

4.1 Example of ADC continuous data acquisition with SPI 
transfer
The ADC is configured to operate in Continuous Conversion mode. In this mode, it 
continuously converts one input channel at the maximum speed. In this mode, the AHB bus 
frequency is set to 56 MHz, the ADC prescaler to 4 and the sample time to 13.5 cycles. 
These settings are transferred through DMA1 channel 1 into a buffer located in a system 
RAM buffer. The data bandwidth for channel 1 is set to 0.54 Mtransfer/s. 

After the DMA has filled one half of the buffer with ADC data, the software computes the 
peak value and normalizes the digitized data (the peak value is set to 0xFF). The results of 
the conversion are then transmitted externally through the SPI interface.

The results of the conversion are then transmitted externally through the SPI1 interface. 
Data are transferred from the SRAM buffer using DMA1 channel 3 to SPI1 data register. To 
achieve the maximum DMA transfer speed of 0.875 Mtransfers/s, the SPI1 interface is 
configured in 16-bit master transmit mode, and 14 MBaud transfer speed.

However, as SPI1 operates in master mode, and the SPI1 effective data transfer speed is 
limited by the data availability rate of 1 Mtransfers/s, the priorities are configured as 
following:

● Channel1 (ADC): VeryHigh

● Channel3 (SPI1_TX): High. 

4.2 ADC continuous data acquisition with direct SPI transfer
This example implements almost the same function as the previous one, without data 
normalization. As the data are not used internally by the CPU, the bus occupation can be 
reduced by half by transferring directly data from the ADC converter to the SPI data register.

As a consequence, only DMA1 channel 1 is used. The destination memory address for this 
channel is set to the SPI data register, without the need of an intermediate SRAM buffer.
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4.3 GPIO fast data transfer with DMA
This example shows how to use different peripherals for DMA request and data transfer. 
This mechanism allows to implement simple fast parallel synchronous interfaces without 
using the CPU (for example a camera interface).

Timer 3 and DMA1 channel 6 connected to TIM3_TRIG are used to implement this data 
acquisition interface. An 16-bit parallel data is available on the GPIO port and an external 
clock signal applied on the external trigger input of Timer 3. On the rising edge of the 
external trigger, the timer generates a DMA request. As the GPIO data register address is 
set to DMA1 channel 6 peripheral address, the DMA controller reads the data from the 
GPIO port on each DMA request, and stores it into an SRAM buffer.
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Table 3. Document revision history

Date Revision Changes

29-June-2007 1 Initial release.

10-Dec-2007 2

Minor text modifications in Section 2.1: Main features.
Updated DMA/CPU clock cycle information with bus matrix 
arbitration and APB bridge data in Section 3.3: DMA latency 
and Section 3.4: Databus bandwidth limitation. 

Updated relation between internal data bandwidth and bus 
type in Section 3.5.2: Internal data bandwidth.

Updated Section 4.1: Example of ADC continuous data 
acquisition with SPI transfer.

Changed DMA channel 4 into DMA channel 6, Timer 1 into 
Timer 3 and 8-bit data into 16-bit data in Section 4.3: GPIO 
fast data transfer with DMA.

30-Apr-2009 3

Document updated to cover the case where the device has 
two DMA controllers (Table 2: Peripherals served by DMA2 
and channel allocation added, Figure 1: Bus system and 
peripherals supporting DMA updated).

Updated DMA/CPU clock cycle information with latency vs. 
total service time in Section 3.3: DMA latency and Section 3.4: 
Databus bandwidth limitation.

Small text changes.
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